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ABSTRACT 
Accurate performance evaluation of cloud computing resources is a necessary prerequisite for ensuring 
that quality of service (QoS) parameters remain within agreed limits. In this chapter, we consider cloud 
centers with Poisson arrivals of batch task requests under total rejection policy; task service times are 
assumed to follow a general distribution. We describe a new approximate analytical model for 
performance evaluation of such systems and show that important performance indicators such as mean 
request response time, waiting time in the queue, queue length, blocking probability, probability of 
immediate service, and probability distribution of the number of tasks in the system can be obtained in a 
wide range of input parameters. 
 
INTRODUCTION 

Cloud computing is a novel computing paradigm in which different computing resources such as 
infrastructure, platforms and software applications are made accessible over the internet to remote users 
as services [40].  It is quickly gaining acceptance: According to IDC, 17 billion dollars was spent on 
cloud-related technologies, hardware and software in 2009, and spending is expected to grow to 45 billion 
by 2013 [31].  Due to the dynamic nature of cloud environments, diversity of users' requests, and time 
dependency of load, providing agreed quality of service (QoS) while avoiding over-provisioning is a 
difficult task [42]. Performance evaluation of cloud centers is therefore an important research task. 
However, despite considerable research effort that has been devoted to cloud computing in both academia 
and industry, only a small portion of it have dealt with performance evaluation. In this chapter, we 
address this deficiency by proposing an analytical model for performance evaluation of cloud centers.  
The model utilizes queuing theory and probabilistic analysis to allow tractable evaluation of several 
important performance indicators, including response time and other related measures [41]. 
 
We assume that the cloud center consists of a number of servers that are allocated to users in the order of 
request arrivals.  Users may request a number of servers in a single request, i.e., we allow batch arrivals, 
hereafter referred as super-tasks arrivals. This model is consistent with the so-called On-Demand services 
provided by Amazon Elastic Compute Cloud (EC2) [1].  Such services provide no advance reservation 
and no long-term commitment, which is why clients may experience delays in fulfillment of requests. 
(The other types of services offered by Amazon EC2, known as Reserved and Spot services, have 
different allocation policies and availability). While many of the large cloud centers employ virtualization 
to provide the required resources such as servers [10], we consider servers to be physical servers; our 
model is thus applicable to intra-company (private) clouds as well as to public clouds of small or medium 
providers. 
 
As the user population size is relatively high and the probability of a given user requesting service is 
relatively low the arrival process can be adequately modeled as a Markovian process, i.e., super-tasks 
arrive according to a Poisson process [11]. However, some authors claimed that Poisson process is not 
adequately modeled the arrival process in real cloud centers [46]. 
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When a super-task arrives, if the necessary number of servers is available, they are allocated immediately; 
if not, the super-task is queued in the input buffer until the servers become available, or rejected if the 
input buffer is unable to hold the request.  As a result, all tasks within a super-task obtain service, or are 
rejected, simultaneously. This policy, known as total rejection policy, is well suited to modeling the 
behavior of a cloud center; it is assumed that the users request as many servers as they need, and would 
not accept a partial fulfillment of their requests.  
 
A request may target a specific infrastructure instance (e.g., a dual- or quad-core CPU with specified 
amount of RAM), a platform (e.g., Windows, Linux, or Solaris), or a software application (e.g., a 
database management system, a Web server, or an application server), with different probabilities.  
Assuming that the service time for each component of the resulting infrastructure-platform-application 
tuple follows a simple exponential or Erlang distribution, the aggregate service time of the cloud center 
would follow a hyper-exponential or hyper-Erlang distribution.  In this case, the coefficient of variation 
(CoV, defined as the ratio of standard deviation and mean value) of the resulting service time distribution 
exceeds the value of one [6].  As a result, the service time should be modeled with a general distribution, 
preferably one that allows the coefficient of variation to be adjusted independently of the mean value. 
 

Therefore, we model the cloud center as an [ ] / / /xM G m m r queuing system which indicates that tasks 
arrive in batches or groups with exponentially distributed inter-arrival time, that the service time of tasks 
in a super-task is generally distributed, and that the number of servers is m while the length of the input 
buffer is r (so that the capacity of system is m r ).  The probability distribution of the number of tasks 
within a super-task is also generally distributed.  
 
Such queuing system can be analyzed using stochastic processes. First we define a continuous-time 
process, original process that records the number of tasks in the system during the time. Since the original 
process is not Markovian, we employ the embedded Markovian processes to analyze the system and 
obtain desired performance metrics approximately. This chapter has four main contributions: 
 

 We develop approximate but accurate and tractable model of cloud. Our model considers cloud 
centers with batch task arrivals, general task service time distribution, and general batch size 
distribution. 

 
 Our model provides full probability distribution of the task response time and the number of tasks 

in the system (in service as well as in the input buffer).  It also provides mean response time for a 
request, mean waiting time in the input buffer, probability that a super-task is blocked, and 
probability that a request will obtain immediate service.   

 
 Performance of the cloud center was found to be very dependent on the coefficient of variation, 

CoV, of the task service time as well as the size of batches. Larger batches or/and higher value 

( 1 ) of coefficient of variation of service time resulting in longer response time but also in lower 

utilization for cloud providers.    
 

 Performance might be improved by both partitioning the requests according to the size of batches 
or based on the coefficient of variation of service times and then processing them through 
separate sub-centers. 

 
The chapter is organized as follows: in related work section, we survey related work in cloud performance 
analysis as well as in queuing system analysis. Analytical Model section presents our model and the 
details of the analysis. Numerical Validation section presents the numerical results obtained from the 
analytical model, as well as those obtained through simulation. In Performance Improvement Techniques 
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section, we propose two techniques in order to improve the performance of a cloud center. Finally, 
Conclusion section summarizes our findings and concludes the chapter. 
 
RELATED WORK  

Cloud computing has attracted considerable research attention, but only a small portion of the work done 
so far has addressed performance issues.  In [42], a cloud center is modeled as the classic open network 
with single arrival, from which the distribution of response time is obtained, assuming that both inter-
arrival and service times are exponential. Using the distribution of response time, the relationship among 
the maximal number of tasks, the minimal service resources and the highest level of services was found. 
 
In [43], the cloud center was modeled as a / / /M M m m r queuing system from which the distribution 
of response time was determined.  Inter-arrival and service times were both assumed to be exponentially 
distributed, and the system has a finite buffer of size m r . The response time was broken down into 
waiting, service, and execution periods, assuming that all three periods are independent (which is 
unrealistic, according to authors' own argument). 
 
In [4,33] the authors considered the problem of scheduling different classes of tasks on multiple 
distributed servers to minimize an objective function based on per-class mean response or waiting time. 
Their allocation of task types to servers, however, is not truly applicable to cloud computing domain since 
both of the papers corresponded every single server to a separate queue (i.e., combinations of 

/ /1M G queues). Total rejection policy, for example, may not be attainable in such a configuration. 
 
Most theoretical analyses have relied on extensive research in performance evaluation of / /M G m   
queuing systems [27,29,44,37]. However, the probability distributions of response time and queue length 
in / /M G m and / / /M G m m r cannot be obtained exactly, which has motivated the search for an 
approximate solution. 
 
An approximate solution for steady-state queue length distribution in a / /M G m  system with finite 
waiting space was described in [22].  As the approximation was given in an explicit form, its numerical 
computation is easier than when using earlier approximations [12,39]. The proposed approach is exact 
for / / /M G m m and reasonably accurate in the more general case of / / /M G m m r  when 0r  , but 
only when the number of servers m is small. 
 
A similar approach in the context of / /M G m  queues, but extended so as to approximate the blocking 
probability and, thus, to determine the smallest buffer capacity such that the rate of lost tasks remains 
under predefined level, was described in [23].  An interesting finding is that the optimal buffer size 
depends on the order of convexity for the service time; the higher this order is, the larger the buffer size 
should be. 
 
An approximation for the average queuing delay in a / / /M G m m r queue, based on the relationship 
of joint distribution of remaining service time to the equilibrium service distribution, was proposed in 
[30].  Another approximation for the blocking probability, based on the exact solution for finite 
capacity / / /M G m m r queues, was proposed in [34].  Again, the estimate of the blocking probability 
is used to guide the allocation of buffers so that the loss/delay blocking probability remains below a 
specific threshold. 
 
As the above results rely on some approximation(s) to obtain a closed-form solution, their validity is 
severely limited: in most cases, they accuracy is acceptable only when the number of servers is 
comparatively small, typically below 10 or so, which makes them unsuitable for performance analysis of 
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cloud computing data centers. Moreover, the approximations are very sensitive to the probability 
distribution of task service times, and thus become increasingly inaccurate when the coefficient of 
variation of the service time, CoV, increases toward and above the value of one.  Finally, approximation 
errors are particularly pronounced when the traffic intensity  is small and/or when both the number of 
servers m and the CoV of the service time are large [5,24,38]. 
 
In [3,2], closed-form solutions for response time and mean queue size in a / /G G m  queuing system 
were found, but under the assumption that both the input arrival process and task service time can be 

described with a Coxian distribution. Moreover, its computational complexity is 3( )O m  and it considers 

the system with an infinite buffer, both of which render it unsuitable for performance modeling of cloud 
centers. 
 
Our earlier work [19,14,15,16] presents an analysis of a cloud center under the assumptions of single task 
arrivals or unlimited buffer space which are much more restrictive than our current work. We also 
proposed a preliminary version of this work in [17]. Our recent works, [21,18, 20], are more concerned 
with virtualization, pool management and availability. They are restricted to exponentially distributed 
service time as opposed to this work that considers generally distributed service time. 
 
Batch arrivals present an additional difficulty.  An upper bound for the mean queue length and lower 
bounds for the delay probabilities (that of an arrival batch and that of an arbitrary task in the arrival batch) 
was described in [45]. An approximate formula is also developed for the general batch-arrival 

queue [ ] / /xGI G m . In spite of the simplicity and acceptable performance, the approach is accurate 
enough for small batch sizes, up to 3, as well as small number of servers (less than 10). 
 
In [9], the authors proposed an approximation method for the computation of the steady-state distribution 
of the number of tasks in queue as well as the moments of the waiting time distribution. They examined 
both hypo-exponential and hyper-exponential distribution family for service time, which is necessary for 
modeling a dynamic system such as cloud farms; however they just performed numerical results for a 
system with up to seven server and there is no result or indication about the efficiency of the method in 
case of larger number of servers or a system with finite capacity. 
 
Another approximate formula was proposed in [7]. The authors presented an approximate formula for the 

steady-state average number of tasks in the [ ] / /xM G m  queuing system. The derivation of the formula is 

based on a heuristic argument whereby a reformulation of the number of tasks in [ ] / /1xM G  is extended 
to the multi-server queue. From a computational viewpoint, the approach is simple to apply, though, the 
relative percentage error incurred seem to be unavoidable when the number of servers is large, the mean 
batch size is small or the coefficient of variation of service time is larger than one. 
 

A diffusion approximation for a [ ] / /xM G m  queue was developed in [25].  The authors derived an 
approximate formula for the steady-state distribution of the number of tasks in the system, delay 
probability and mean queue length. However, the diffusion approach gives unacceptably large errors 
when batch size is larger than 3. 
 
Overall, existing methods are not well suited to the analysis of cloud center where the number of servers 
may potentially be huge, the distribution of service times is unknown, and batch arrival of requests is 
allowed. 
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ANALYTICAL MODEL 

A system with above mentioned description can be modeled as an [ ] / / /xM G m m r  queuing system. 
We adopt a technique similar to embedded Markov chain in [35,26] for analyzing the system.  We look at 
the system at moments of super-task arrivals and find the steady-state distribution of number of tasks in 
system at such instants. Due to the absence of Poisson Arrivals See Time Averages (PASTA) property, 
we then find the arbitrary-time steady-state distribution of number of tasks in the system using the 
embedded Markov process. Table 1 shows the symbols and their corresponding descriptions. 
 

Table 1: Symbols and Corresponding Description. 

Symbol Description 

kg  probability that the super-task size is equal to k. 

g  Mean value of super-task size. 

( )g z  Probability generation function of the super-task size. 

  Arrival rate 
  Service rate 
m  Number of servers 

( )A x  and ( )B x  Probability density function of arrival and service time respectively. 

*( )A s  and *( )B s  Laplace Stieltjes Transform (LST) of arrival and service time. 

( )kR x  Probability density function of residence time at states 

zP  Probability of having no departure. 

( , , )LLP i j k  Probability of moving from light traffic to light traffic. 

( , , )LHP i j k  Probability of moving from light traffic to heavy traffic. 

( , , )HHP i j k  Probability of moving from heavy traffic to heavy traffic. 

( , , )HLP i j k  Probability of moving from heavy traffic to light traffic. 

T  Standard deviation of response time. 

sk  Skewness of response time. 

ku  Kurtosis of response time. 

 

Let kg  be the probability that the super-task size is equal to k, 1, 2,...,k MBS , in which M BS is the 

maximum batch size; kg and M BS depend on users' applications.  Let g and ( )g z  be the mean value 

and probability generating function (PGF) of the task burst size respectively.  
 

  

1

(1)

( )

[ ] 1, 2,...,

(1)

M BS
k

g k
k

k g

g

z g z

g Prob X k k M BS

g



 

  





  (1.1) 

  
Super-task request arrivals follow a Poisson process so super-task request inter-arrival time A is 

exponentially distributed with rate of
1


. We denote its, cumulative distribution function (CDF) as 
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( ) [ ]A x Prob A x   and its probability density function (pdf) as ( ) xa x e   . The Laplace Stieltjes 

Transform (LST) of inter-arrival time is 

 *

0
( ) ( )sxA s e a x dx

s






 

   

Tasks within a super-task have service times which are identically and independently distributed 

according to a general distribution B, with a mean service time of
1

b


 . The CDF of the service time 

is  ( )B x Prob B x  , and its pdf is ( )b x . The LST of service time is   

 *

0
( ) ( )sxB s e b x dx


    

Residual task service time is the time interval from an arbitrary point (an arrival point in a Poisson 

process) during a service time to the end of the service time; we denote it as B  . Elapsed task service 

time is the time interval from the beginning of a service time to an arbitrary point of the service time; we 

denote it as B . It can be shown that both residual and elapsed task service times have the same 

probability distribution, the LST of which can be calculated as [35] 
 

 
*

* * 1 ( )
( ) ( )

B s
B s B s

sb
 


    (1.2) 

The traffic intensity may be defined as  

 
g

m





  

For practical reasons and ergodicity condition, we assume that 1  . If at the moment of super-task 

arrival the input queue doesn't have enough space for whole super-task, the super-task would be lost. We 
also consider total rejection policy for servicing [36] in which the service time of whole tasks in a super-
task start at the same time on different servers; in other words, if number of idle servers is less than super-
task size then those idle servers remain unused till other servers become free and then the super-task can 
be fit in servers. Here the waiting time for the first, last and any arbitrary tasks in a super-task is identical 
because all of them get into service at the same time. 
 
THE EMBEDED PROCESSES 

The number of tasks in a cloud center during the operation hours can be considered as a collection of 
random variables that are indexed by time, collectively, referred to as a stochastic process. Such original 
process is non-Markovian since the service time of tasks is not exponentially distributed. However, arrival 
points have the property that all past states information is irrelevant in determining the future of the 
process at such epochs. Therefore we may define an embedded semi-Markov process at super-task arrival 
instances for characterization of the system. We also introduce another process, an embedded Markov 
process that imitates the original process in a discrete manner, namely, at the instants of super-task 
arrivals. More specifically, the value of embedded Markov process will be changed only at super-task 
arrivals. Fig. 1 shows a sample path of original, semi-Markov and Markov processes schematically. With 
regards to embedded Markov process, we may also recognize an embedded Markov chain at super-task 
arrivals. Note that in the embedded Markov process the next event after last arrival is the next super-task 
arrival as opposed to embedded semi-Markov process in which the next event is the next task departure or 
super-task arrival. The associated embedded Markov chain is shown in Fig. 2, where states are numbered 
according to the number of tasks currently in the system (i.e., those in service and those awaiting service). 
For clarity, some transitions are not fully drawn.  
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Figure 1: A sample path of the original process, embedded semi-Markov process and embedded Markov 
process 
 
We employ the embedded Markov chain to identify the steady-state distribution of number of tasks in the 
system at super-task arrivals. However the transition probabilities of the embedded Markov chain cannot 
be exactly determined due to intractable behavior of the embedded semi-Markov process (ESMP). More 
precisely, in order to determine the associated transition probabilities we need to count the number of task 
departures between two super-task arrivals; however such counting process is intractable so that we need 
to resort to approximation. As a result, the embedded Markov chain models the system approximately at 
super-tasks arrival instances. The approximate embedded Markov chain (aEMC) is more elaborated in 
Transition Matrix section where we calculate the transition probabilities.     
 
Figure 2: Embedded Markov chain associate with the embedded Markov process. 
  

Let nA  and 1nA   indicate the moment of thn and ( 1)thn   super-task arrivals to the system, respectively, 

while nq  and 1nq  indicate the number of tasks found in the system immediately before these arrivals. If k 

is the size of super-task and 1nv  indicates the number of tasks which depart from the system between nA  

and 1nA  , the following holds:  

 1 1n n nq q v k      (1.3) 

 
We need to calculate the transition probabilities associated with aEMC, defined as 

 1( , , ) | andn n gP i j k Prob q j q i X k
       (1.4) 

i.e., the probability that i k j  customers are served during the interval between two successive super-

task arrivals. Such counting process requires the exact system behavior between two super-task arrivals.   
Obviously for j i k  , 

 ( , , ) 0P i j k    (1.5) 

Since there are at most i k  tasks present between the arrival of nA  and 1nA  . For calculating the other 

transition probabilities associated with aEMC, we need to identify the distribution function of residence 
time for each state in ESMP. We now describe the residence times for states in the ESMP. 
 

 Case 1: The state residence time for the first departure is remaining service time, ( )B x , since 

the last arrival is a random point in the current task's service time.  
 

 Case 2: If the second departure is from the same server then clearly the state residence time is the 

service time ( ( )B x ). 

 
 Case 3: No departure between two super-task arrivals as well as the last departure before the next 

arrival makes the state residence time exponentially distributed with the mean value of
1


 .  

 Case 4: If thi departure is from another server then the CDF of state residence time is ( )iB x . In 

Fig. 4, for instance, departure 21D takes place after departure 11D . Therefore 11D could be 

considered as an arbitrary point in the remaining service time of the task in server #2; so the CDF 

of residence time for second departure is 2 ( )B x . As a result the LST of 2 ( )B x is the same 



 8

as *( )B s , Eq. (1.6), though, here we have one more step in recursion. Generally, the LST of 

residence times between subsequent departures from non-identical servers may be recursively 
defined as follow  

 

*
( 1)*

( 1)

1 ( )
( ) , 1, 2,3,

·

i

i

i

B s
B s i

s b

 



 


     (1.6)  

where 

 *
( 1) ( 1) 0[ ( )]i i s

d
b B s

ds
        

To maintain the consistency in notation we may define the followings: 

 0b b    

 * *
0 ( ) ( )B s B s    

 * *
1 ( ) ( )B s B s    

Let ( )kR x denotes the CDF of residence times at state k in ESMP: 

 

 

( ), Case 1

( ), Case 2
( )

( ), Case 3

( ), Case 4 2,3,

k

i

B x

B x
R x

A x

B x i









 

  

  (1.7) 

 
Figure 3: System behavior between two observation points and all possible state residence times. 
 
DEPARTURE PROBABILITIES 

To find the elements of the transition probability matrix, we need to count the number of tasks departing 
from the system in the time interval between two successive super-task arrivals. Therefore at first step, we 

need to calculate the probability of having k arrivals during the residence time of each state. Let nB  , nB  

and ( 2,3, )n
iB i   indicate the number of arrivals during residence times: ( )B x , ( )B x  and ( )iB x  

respectively. Due to Poisson arrivals we may define the following probabilities:  
 

 

0

0

0

0

( )
Prob[ ] ( )

!

( )
Prob[ ] ( )

!

( )
Prob[ ] ( )

!

( )
Prob[ ] ( )

!

k
n x

k

k
n x

k

k
n x

k

k
n x

ik i i

x
B k e dB x

k

x
B k e dB x

k

x
A k e dA x

k

x
B k e dB x

k
























 












 

 

 

 

 









  (1.8) 

In fact we are interested in the probability of having no arrival; because using those probabilities, we are 
able to calculate the transition probabilities in aEMC.  
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  (1.9) 

Note that 1x xP P . We may also define the probability of having no departure between two super-task 

arrivals. Let A be an exponential random variable with the parameter of   and B  be a random variable 

which is distributed according to ( )B x  (remaining service time). The probability of having no departure 

is equal to Prob[ ]A B  : 

 

 

 
0

0 0 0

0
0 0

0 0
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{ | } ( )

{ } ( ) ( )

1 ( ) (1 ) ( )

( ) ( )

1 ( ) 1

z
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  (1.10) 

Using probabilities xP , yP  , xyP , ixP and zP  we may define the transition probabilities for aEMC. 

 
TRANSITION MATRIX 

Based on servicing policy, we may identify four different regions of operation for which different 
conditions hold. The numbers on rows and columns correspond to the number of tasks in the system 
immediately before a super-task arrival (i) and immediately upon the next super-task arrival (j), 
respectively. We also have k in transition probability which indicates the size of super-task. Each region 
has a specific transition probability equation that depends on current state, i, next state, j, batch size, k, 
and number of departures between two super-task arrivals. Note that for all regions if i k j   the 

following is held: 
 

 ( , , ) zP i j k P   (1.11) 
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REGION 1 

In this region, the input queue is empty and remains empty until next arrival; the transitions originate and 
terminate on the states that are on the left hand side of state m (i.e., lower than m). Let us denote the 
number of tasks which depart from the system between two super-task arrivals as ( )w k i k j   .  

For ,i j m , the transition probability is 

 

 

( , ( ))
( )

0

( , ( ))
( )

(1 ) , if 
( )

( , , )

(1 ) · (1 )

      

  , i  f
)

   
(

min i w k
w k j

x x
z

LL

min i w k
z i z w k z z i j

x x xy xy
z i k m

i k
P P i k m

w k

P i j k

i k
P P P P i k m

z w k z



   

  

  
    

 




              





 (1.12) 

 

 
 

REGION 2 

In this region, the queue is empty before the transition, but not empty afterwards, which means that 
transitions originate below state m and terminate above it: ,i m j m  .  In this case the arriving super-

task can't be accommodated in the idle servers so it will be queued. Transition probabilities are 
 

  ( ) ( )
1( , , ) ( 1) ·(1 )w k i w k

LH s sx xP i j k i s P P 
       (1.13) 

 

NUMBER OF IDLE SERVERS 

To calculate the transition probabilities for regions 3 and 4, we may need to know the probability of 
having i idle servers out of m. Note that the total rejection policy, explained in Introduction section, 
means that a super-task may have to wait even if there are some free servers; this happens when the 
number of idle servers is smaller than the number of tasks in the super-task at the head of the queue.  In 
other words, in order to count the number of departures, the real service rate of the system should be 
determined. 
 
Suppose that we have a Poisson batch arrival process in which the batch size is a generally distributed 
random variable. Each arriving batch is stored in a finite queue. Storing the arrival batches in the queue 
will be continued until either the queue gets full or the last arrival batch cannot be fitted in the queue. If 
the queue size is t, the mean batch size is g , and the maximum batch size is equal to MBS, what is the 

probability (denoted as ( )iP n ) of having n unoccupied spaces in the queue after all?  It can be seen that 

this problem can be reduced to the original (idle servers) problem easily. 
 
It is clear that if the distribution of batch size is deterministic and equal to one, that is single arrival, then 
the queue will get full eventually. However, if the batch size is generally distributed, which is the case in 

our scenario, the probability ( )iP n  cannot be computed exactly, and an approximate solution is needed.  

We have built a small simulator using object-oriented Petri net-based simulation engine Artifex by 
RSoftDesign, Inc. [32], and simulated the queue size for different mean batch sizes; the queue size was 

fixed at 200m  , as the results indicate that it has virtually no impact on the probability ( )iP n .  The 

experiment was performed one million times, and the resulting probability distribution is shown in Fig. 6.  
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Figure 4: Probability of having n idle servers for different batch sizes ( ( )iP n ). 

 
The shape indicates exponential dependency so we have used the interpolation software Curve Expert [8] 
to find the parameter values that give the best fit.  The parameter values that give the best fit for the 

exponential function bxae are shown in Table 2, for different values of mean batch size; in all cases, the 
approximation error remains below 0.18%.  
 

Table 2: Parameters for exponential curves: bxae  
batch size 2 4 6 8 

A 5.154051E-01 2.725053E-01 1.839051E-01  1.393975E-01 

  B   -6.918772E-01 -2.913967E-01 -1.825455E-01 -1.334660E-01 

 
This allows us to define the transition probabilities for region 3 and 4 in transition probability matrix. 
 
REGION 3 

Region 3 corresponds to the case where the queue is not empty throughout the inter-arrival time, 
i.e., ,i j m . In this case all transitions start and terminate at a state above m in Fig. 2, and the state 

transition probabilities can be approximately computed as 
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  (1.14) 

Note that under moderate load it is not likely to have more than a couple of task departures from a single 
server. 
 
 

REGION 4 

Finally, region 4, in which i m  and j m , describes the situation where the first arrival nA  finds non-

empty queue which it joins while at the time of the next arrival ( 1nA  ) there are j tasks in the system, all 

of which are in service and the system has at least one idle server.  The transition probabilities for this 
region are 
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EQUILIBRIUM BALANCE EQUATIONS 

After finding matrix P we can establish the balance equations. Such balance equations will have a unique 
steady state solution if the corresponding Markov chain is ergodic. The balance equations  
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      (1.16) 

 
That augmented by the normalization equation  
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   (1.17) 

make the equations set. So far we have 2m r  equations which includes 1m r   linearly independent 

equations from (1.16) and one normalization equation from (1.17); however we have 1m r   

variables 0 1 2, , , , m r     ; so in order to obtain the unique equilibrium solution we need to remove 

one of the equations; the wise choice would be the last equation in (1.16) due to minimum information 
this equation holds about the system in comparison with the others.  Here, the steady state balance 
equations can't be solved in closed form, hence we must resort to a numerical solution. 
 
DISTRIBUTION OF NUMBER OF TASKS IN THE SYSTEM 

Once we obtain the steady state probabilities we are able to establish the PGF for the number of tasks in 
the system at the time of a super-task arrival: 
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    (1.18) 

Due to batch arrival, the PASTA property doesn't hold; thus, the PGF ( )z of the distribution of number 

of tasks in system at arrival times is not the same with PGF ( )P z  for distribution of number of tasks in 

system at any arbitrary time. 
 
DISTRIBUTION OF NUMBER OF TASKS IN THE SYSTEM AT ANY ARBITRARY 

TIME 

In order to obtain steady-state distribution at arbitrary time, we employ a technique similar to semi-
Markov process in [35]. We use the approximate embedded Markov process (aEMP) at super-task arrival 
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points. The aEMP imitates the original process but it will be updated just at the arrival instants. Let 

( )kH x  be the CDF of the residence time that aEMP stays in the state k: 

 

 1( ) [ | ] 1 , 0,1, 2,...,x
k n n nH x Prob t t x q k e k m r

          (1.19) 

this in our system does not depend on n. The mean residence time in state k is 
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and the steady-state distribution in aEMP is given by [35].  
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where{ ; 0,1, ..., }k k m r    is the distribution probability at aEMC. So the steady-state probability of 

aEMP is identical with the embedded aEMC.  We now define the CDF of the elapsed time from the most 
recent observing point looking form an arbitrary time by 
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the arbitrary-time distribution is given by 
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The PGF of the number of tasks in system is given by 
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Mean number of tasks in the system, then, obtained as 
 (1)p P   (1.25) 

 
BLOCKING PROBABILITY 

Since arrivals are independent of buffer state and the distribution of number of tasks in the system was 
obtained, we are able to directly calculate the blocking probability of a super-task in the system with 
buffer size of r:  
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The appropriate buffer size, rò  , in order to have the blocking probability below the certain value, ò, is: 

 

 { 0 | ( ) & ( 1) }b br r P r P r    ò ò   (1.27) 
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PROBABILITY OF IMMEDIATE SERVICE  

Here we are interested in the probability with that super-tasks will get into service immediately upon 
arrival, without any queuing. For such super-tasks, the response time would be equal to the service time:  
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DISTRIBUTION OF RESPONSE AND WAITING TIME 

Let W  denote the waiting time in the steady state, and similarly let *( ) and ( )W x W s  be the CDF, of W  

and it’s LST, respectively. For the [ ] / / /xM G m m r systems the queue length has the same distribution 

asW , the number of tasks which arrive during the waiting time: 
 

 *( ) ( (1 ))eQ z W z    (1.29) 

where (1 )e bP   .  

The left hand side of (1.30) in our system can be calculated as: 
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Hence, we have 
 

 *
1 ( / )( ) ( ) | (1 / )
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Moreover, the LST of response time is 
 

 * * *( ) ( ) ( )T s W s B s   (1.32) 

 

where *( )B s  is the LST of service time. The i th moment, ( )it , of the response time distribution is given 

by  
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Using the moments we can calculate standard deviation as [13]: 
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Skewness as: 
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And kurtosis as: 
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NUMERICA VALIDATION 

The resulting balance equations of analytical model have been solved using Maple 15 from Maplesoft, 
Inc. [28]. To validate the analytical solution, we have built a discrete event simulator of the cloud server 
farm using the Artifex engine [32]. 
 
We have configured a cloud center with 200 servers and the capacity of 300 tasks (200 servers plus 100 
of input queue space). Traffic intensity was set to 0.85   , which may seem too high but could easily be 

obtained in private cloud centers or public centers of small/medium size providers. Task service time is 
assumed to have Gamma distribution, while the distribution of batch size is assumed to be geometric. We 
set the maximum batch size as 2 1M BS g  (truncated geometrically distributed batch sizes).  We chose 

2 1g   for maximum batch size because in any cloud center usually there is an upper limit for number of 

requesting servers by a customer; if a customer needs more servers he has to submit another request. 
Gamma distribution is chosen because it allows the coefficient of variation to be set independently of the 
mean value. Two values are used for CoV; the low value, 0.5CoV  , which results in hypo-

exponentially distributed service time and the higher value 1.4CoV  , which results in hyper-
exponentially distributed service time. In all plots, the simulation and analytical results are labeled with 
Sim and AM, respectively. 
 
The mean number of tasks in the system and queue are shown in Fig. 7. As can be seen, the queue size 
increases as the size of batches get increased whereas the mean number of tasks in the system gets 
decreased at the same time; such a behavior may be attributed to the total rejection policy, which lets 
some servers to remain idle even though there are some super-tasks in the queue.   
 
Figure 5a: Mean number of tasks in the system. 
Figure 5b: Mean queue length. 
 
Figure 5: Number of tasks in the system and queue for a cloud center with 200 servers and capacity of 
300. 
 
We also compute the blocking probability, and the results are shown in Fig. 8a. The blocking probability 
increases as the size of batches get increased. Since the percentage of tasks which can get immediately 
into service is an important non-functional service property in the service level agreement (SLA), we also 
calculate the probability of immediate service (which might be termed availability); the result, see Fig. 8b, 
indicates that the larger the batch size results in the lower the probability of immediate service.   
 
Figure 6a: Blocking probability. 
Figure 6b: Probability of getting immediate service. 
 
Figure 6: Probability of queuing and immediate service with regard to batch sizes. 
 
We compute the system response time and queue waiting time for super-tasks. Note that, because of the 
total rejection policy, the response and waiting times for super-tasks are identical to those individual tasks 
within the super-task. As depicted in Fig. 9, response time, which is the sum of waiting time and service 
time, and waiting time are increased linearly at the same rate while the size of batches is getting larger; 
the reason is that because large super-tasks are more likely to remain longer in the queue in order to be 
fitted on the idle servers due to the total rejection policy.  
 
 
Figure 7a: Response time. 
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Figure 7b: Waiting time in queue. 
 
Figure 7: Response time and waiting time in queue. 
 
Overall, the results suggest that performance is worse when the service time is hyper-exponentially 
distributed (i.e., 1.4CoV ).  To obtain further insight into cloud center performance, we also calculate the 

higher moments of response time, as shown in Fig. 10. Standard deviation, shown in Fig 10a, increases as 
the size of batches gets increased. Moreover, response time is more dispersed when the service time of 
tasks is hyper-exponentially distributed.  
 
Figure 8a: Standard Deviation 
Figure 8b: Skewness. 
Figure 8c: kurtosis. 
Figure 8: Higher moment related performance metrics. 
 
Skewness is a measure of symmetry of a distribution around the mean; a value of zero indicates a fully 
symmetric distribution, while positive/negative values indicate that the tails are longer on the left/right 
hand side of the mean, respectively. Skewness, shown in Fig. 10b, is rather high, and increases as batch 
size and/or CoV of service time set to large values.  This indicates that, the higher the CoV of service 
time distribution, the longer the tail of the response time distribution will be. Kurtosis indicates whether 
the distribution is more `peaked' or `flat' with respect to the normal distribution with the same mean and 
standard deviation.  As can be seen from Fig. 10c, kurtosis is high which indicates the response time 

distribution is relatively peaked around the mean. However, the values obtained for 1.4CoV  is much 

higher than the corresponding values for 0.5CoV . 

 
The last two diagrams imply that, in practice, the response time will increase rapidly, have a very 
pronounced mean value, and then decrease slowly with a rather long tail.  A long tail means that some 
super-tasks may experience much longer response time than the others, esp. when the input traffic 
consists of super-tasks with widely varying service times and/or large number of tasks in a super-tasks. 
Consequently, a non-negligible portion of super-tasks will experience extremely long delays, or even 
blocking, which may be unacceptable for cloud operators, in private as well as in public clouds. 
 
 
FUTURE RESEARCH DIRECTIONS 

In future, we plan to extend our model for other submission/servicing policies such as partial acceptance. 
We also plan to investigate the possibility of dynamic allocation of servers to sub-centers, as well as the 
charging policies that can bring additional incentives for customers whilst maximizing the profit for cloud 
providers.    
 

CONCLUSION 

Performance evaluation of cloud centers is a crucial task for cloud center providers, as it allows them to 
tailor their SLAs to the terms they are able to efficiently provide to their customers. In this chapter, we 
have described the first analytical model for performance evaluation of a cloud computing center under 
batch arrivals and total rejection policy. To accurately model the cloud environment, we have assumed 
generally distributed service time for each task within super-tasks, general distribution for the batch size, 
and a large number of servers. We have solved the approximate model and validated it through 
simulations. Our results show that the proposed method provided a quite accurate computation of 
important performance indicators such as the mean number of tasks in the system, queue length, mean 
response and waiting time, blocking probability and the probability of immediate service under batch 
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arrival and total rejection policy for both admission and servicing. The distribution of response time is 
also characterized and thus proper configuration for a cloud center was proposed. 
 
Our findings also show that cloud centers which allow requests with widely varying service times may 
impose longer waiting time on its clients, and lower chance of getting immediate service, while having its 
servers less utilized, compared to equivalent centers which deal with certain types of tasks. Moreover the 
bigger batches lead to longer waiting times and less utilization, thereby making operation more costly for 
the cloud provider. 
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