
Performance Evaluation of Cloud Data

Centers with Batch Task Arrivals

Hamzeh Khazaei1, Jelena Mišić1 and Vojislav B. Mišić1

1Ryerson University, Toronto, ON, Canada

ABSTRACT
Accurate performance evaluation of cloud computing resources is a necessary prerequisite for ensuring
that quality of service (QoS) parameters remain within agreed limits. In this chapter, we consider cloud
centers with Poisson arrivals of batch task requests under total rejection policy; task service times are
assumed to follow a general distribution. We describe a new approximate analytical model for
performance evaluation of such systems and show that important performance indicators such as mean
request response time, waiting time in the queue, queue length, blocking probability, probability of
immediate service, and probability distribution of the number of tasks in the system can be obtained in a
wide range of input parameters.

INTRODUCTION

Cloud computing is a novel computing paradigm in which different computing resources such as
infrastructure, platforms and software applications are made accessible over the internet to remote users
as services [40]. It is quickly gaining acceptance: According to IDC, 17 billion dollars was spent on
cloud-related technologies, hardware and software in 2009, and spending is expected to grow to 45 billion
by 2013 [31]. Due to the dynamic nature of cloud environments, diversity of users' requests, and time
dependency of load, providing agreed quality of service (QoS) while avoiding over-provisioning is a
difficult task [42]. Performance evaluation of cloud centers is therefore an important research task.
However, despite considerable research effort that has been devoted to cloud computing in both academia
and industry, only a small portion of it have dealt with performance evaluation. In this chapter, we
address this deficiency by proposing an analytical model for performance evaluation of cloud centers.
The model utilizes queuing theory and probabilistic analysis to allow tractable evaluation of several
important performance indicators, including response time and other related measures [41].

We assume that the cloud center consists of a number of servers that are allocated to users in the order of
request arrivals. Users may request a number of servers in a single request, i.e., we allow batch arrivals,
hereafter referred as super-tasks arrivals. This model is consistent with the so-called On-Demand services
provided by Amazon Elastic Compute Cloud (EC2) [1]. Such services provide no advance reservation
and no long-term commitment, which is why clients may experience delays in fulfillment of requests.
(The other types of services offered by Amazon EC2, known as Reserved and Spot services, have
different allocation policies and availability). While many of the large cloud centers employ virtualization
to provide the required resources such as servers [10], we consider servers to be physical servers; our
model is thus applicable to intra-company (private) clouds as well as to public clouds of small or medium
providers.

As the user population size is relatively high and the probability of a given user requesting service is
relatively low the arrival process can be adequately modeled as a Markovian process, i.e., super-tasks
arrive according to a Poisson process [11]. However, some authors claimed that Poisson process is not
adequately modeled the arrival process in real cloud centers [46].

 2

When a super-task arrives, if the necessary number of servers is available, they are allocated immediately;
if not, the super-task is queued in the input buffer until the servers become available, or rejected if the
input buffer is unable to hold the request. As a result, all tasks within a super-task obtain service, or are
rejected, simultaneously. This policy, known as total rejection policy, is well suited to modeling the
behavior of a cloud center; it is assumed that the users request as many servers as they need, and would
not accept a partial fulfillment of their requests.

A request may target a specific infrastructure instance (e.g., a dual- or quad-core CPU with specified
amount of RAM), a platform (e.g., Windows, Linux, or Solaris), or a software application (e.g., a
database management system, a Web server, or an application server), with different probabilities.
Assuming that the service time for each component of the resulting infrastructure-platform-application
tuple follows a simple exponential or Erlang distribution, the aggregate service time of the cloud center
would follow a hyper-exponential or hyper-Erlang distribution. In this case, the coefficient of variation
(CoV, defined as the ratio of standard deviation and mean value) of the resulting service time distribution
exceeds the value of one [6]. As a result, the service time should be modeled with a general distribution,
preferably one that allows the coefficient of variation to be adjusted independently of the mean value.

Therefore, we model the cloud center as an [] / / /xM G m m r queuing system which indicates that tasks
arrive in batches or groups with exponentially distributed inter-arrival time, that the service time of tasks
in a super-task is generally distributed, and that the number of servers is m while the length of the input
buffer is r (so that the capacity of system is m r). The probability distribution of the number of tasks
within a super-task is also generally distributed.

Such queuing system can be analyzed using stochastic processes. First we define a continuous-time
process, original process that records the number of tasks in the system during the time. Since the original
process is not Markovian, we employ the embedded Markovian processes to analyze the system and
obtain desired performance metrics approximately. This chapter has four main contributions:

 We develop approximate but accurate and tractable model of cloud. Our model considers cloud
centers with batch task arrivals, general task service time distribution, and general batch size
distribution.

 Our model provides full probability distribution of the task response time and the number of tasks

in the system (in service as well as in the input buffer). It also provides mean response time for a
request, mean waiting time in the input buffer, probability that a super-task is blocked, and
probability that a request will obtain immediate service.

 Performance of the cloud center was found to be very dependent on the coefficient of variation,

CoV, of the task service time as well as the size of batches. Larger batches or/and higher value

(1) of coefficient of variation of service time resulting in longer response time but also in lower

utilization for cloud providers.

 Performance might be improved by both partitioning the requests according to the size of batches
or based on the coefficient of variation of service times and then processing them through
separate sub-centers.

The chapter is organized as follows: in related work section, we survey related work in cloud performance
analysis as well as in queuing system analysis. Analytical Model section presents our model and the
details of the analysis. Numerical Validation section presents the numerical results obtained from the
analytical model, as well as those obtained through simulation. In Performance Improvement Techniques

 3

section, we propose two techniques in order to improve the performance of a cloud center. Finally,
Conclusion section summarizes our findings and concludes the chapter.

RELATED WORK

Cloud computing has attracted considerable research attention, but only a small portion of the work done
so far has addressed performance issues. In [42], a cloud center is modeled as the classic open network
with single arrival, from which the distribution of response time is obtained, assuming that both inter-
arrival and service times are exponential. Using the distribution of response time, the relationship among
the maximal number of tasks, the minimal service resources and the highest level of services was found.

In [43], the cloud center was modeled as a / / /M M m m r queuing system from which the distribution
of response time was determined. Inter-arrival and service times were both assumed to be exponentially
distributed, and the system has a finite buffer of size m r . The response time was broken down into
waiting, service, and execution periods, assuming that all three periods are independent (which is
unrealistic, according to authors' own argument).

In [4,33] the authors considered the problem of scheduling different classes of tasks on multiple
distributed servers to minimize an objective function based on per-class mean response or waiting time.
Their allocation of task types to servers, however, is not truly applicable to cloud computing domain since
both of the papers corresponded every single server to a separate queue (i.e., combinations of

/ /1M G queues). Total rejection policy, for example, may not be attainable in such a configuration.

Most theoretical analyses have relied on extensive research in performance evaluation of / /M G m
queuing systems [27,29,44,37]. However, the probability distributions of response time and queue length
in / /M G m and / / /M G m m r cannot be obtained exactly, which has motivated the search for an
approximate solution.

An approximate solution for steady-state queue length distribution in a / /M G m system with finite
waiting space was described in [22]. As the approximation was given in an explicit form, its numerical
computation is easier than when using earlier approximations [12,39]. The proposed approach is exact
for / / /M G m m and reasonably accurate in the more general case of / / /M G m m r when 0r , but
only when the number of servers m is small.

A similar approach in the context of / /M G m queues, but extended so as to approximate the blocking
probability and, thus, to determine the smallest buffer capacity such that the rate of lost tasks remains
under predefined level, was described in [23]. An interesting finding is that the optimal buffer size
depends on the order of convexity for the service time; the higher this order is, the larger the buffer size
should be.

An approximation for the average queuing delay in a / / /M G m m r queue, based on the relationship
of joint distribution of remaining service time to the equilibrium service distribution, was proposed in
[30]. Another approximation for the blocking probability, based on the exact solution for finite
capacity / / /M G m m r queues, was proposed in [34]. Again, the estimate of the blocking probability
is used to guide the allocation of buffers so that the loss/delay blocking probability remains below a
specific threshold.

As the above results rely on some approximation(s) to obtain a closed-form solution, their validity is
severely limited: in most cases, they accuracy is acceptable only when the number of servers is
comparatively small, typically below 10 or so, which makes them unsuitable for performance analysis of

 4

cloud computing data centers. Moreover, the approximations are very sensitive to the probability
distribution of task service times, and thus become increasingly inaccurate when the coefficient of
variation of the service time, CoV, increases toward and above the value of one. Finally, approximation
errors are particularly pronounced when the traffic intensity is small and/or when both the number of
servers m and the CoV of the service time are large [5,24,38].

In [3,2], closed-form solutions for response time and mean queue size in a / /G G m queuing system
were found, but under the assumption that both the input arrival process and task service time can be

described with a Coxian distribution. Moreover, its computational complexity is 3()O m and it considers

the system with an infinite buffer, both of which render it unsuitable for performance modeling of cloud
centers.

Our earlier work [19,14,15,16] presents an analysis of a cloud center under the assumptions of single task
arrivals or unlimited buffer space which are much more restrictive than our current work. We also
proposed a preliminary version of this work in [17]. Our recent works, [21,18, 20], are more concerned
with virtualization, pool management and availability. They are restricted to exponentially distributed
service time as opposed to this work that considers generally distributed service time.

Batch arrivals present an additional difficulty. An upper bound for the mean queue length and lower
bounds for the delay probabilities (that of an arrival batch and that of an arbitrary task in the arrival batch)
was described in [45]. An approximate formula is also developed for the general batch-arrival

queue [] / /xGI G m . In spite of the simplicity and acceptable performance, the approach is accurate
enough for small batch sizes, up to 3, as well as small number of servers (less than 10).

In [9], the authors proposed an approximation method for the computation of the steady-state distribution
of the number of tasks in queue as well as the moments of the waiting time distribution. They examined
both hypo-exponential and hyper-exponential distribution family for service time, which is necessary for
modeling a dynamic system such as cloud farms; however they just performed numerical results for a
system with up to seven server and there is no result or indication about the efficiency of the method in
case of larger number of servers or a system with finite capacity.

Another approximate formula was proposed in [7]. The authors presented an approximate formula for the

steady-state average number of tasks in the [] / /xM G m queuing system. The derivation of the formula is

based on a heuristic argument whereby a reformulation of the number of tasks in [] / /1xM G is extended
to the multi-server queue. From a computational viewpoint, the approach is simple to apply, though, the
relative percentage error incurred seem to be unavoidable when the number of servers is large, the mean
batch size is small or the coefficient of variation of service time is larger than one.

A diffusion approximation for a [] / /xM G m queue was developed in [25]. The authors derived an
approximate formula for the steady-state distribution of the number of tasks in the system, delay
probability and mean queue length. However, the diffusion approach gives unacceptably large errors
when batch size is larger than 3.

Overall, existing methods are not well suited to the analysis of cloud center where the number of servers
may potentially be huge, the distribution of service times is unknown, and batch arrival of requests is
allowed.

 5

ANALYTICAL MODEL

A system with above mentioned description can be modeled as an [] / / /xM G m m r queuing system.
We adopt a technique similar to embedded Markov chain in [35,26] for analyzing the system. We look at
the system at moments of super-task arrivals and find the steady-state distribution of number of tasks in
system at such instants. Due to the absence of Poisson Arrivals See Time Averages (PASTA) property,
we then find the arbitrary-time steady-state distribution of number of tasks in the system using the
embedded Markov process. Table 1 shows the symbols and their corresponding descriptions.

Table 1: Symbols and Corresponding Description.

Symbol Description

kg probability that the super-task size is equal to k.

g Mean value of super-task size.

()g z Probability generation function of the super-task size.

 Arrival rate
 Service rate
m Number of servers

()A x and ()B x Probability density function of arrival and service time respectively.

*()A s and *()B s Laplace Stieltjes Transform (LST) of arrival and service time.

()kR x Probability density function of residence time at states

zP Probability of having no departure.

(, ,)LLP i j k Probability of moving from light traffic to light traffic.

(, ,)LHP i j k Probability of moving from light traffic to heavy traffic.

(, ,)HHP i j k Probability of moving from heavy traffic to heavy traffic.

(, ,)HLP i j k Probability of moving from heavy traffic to light traffic.

T Standard deviation of response time.

sk Skewness of response time.

ku Kurtosis of response time.

Let kg be the probability that the super-task size is equal to k, 1, 2,...,k MBS , in which M BS is the

maximum batch size; kg and M BS depend on users' applications. Let g and ()g z be the mean value

and probability generating function (PGF) of the task burst size respectively.

1

(1)

()

[] 1, 2,...,

(1)

M BS
k

g k
k

k g

g

z g z

g Prob X k k M BS

g

 (1.1)

Super-task request arrivals follow a Poisson process so super-task request inter-arrival time A is

exponentially distributed with rate of
1

. We denote its, cumulative distribution function (CDF) as

 6

() []A x Prob A x and its probability density function (pdf) as () xa x e . The Laplace Stieltjes

Transform (LST) of inter-arrival time is

 *

0
() ()sxA s e a x dx

s

Tasks within a super-task have service times which are identically and independently distributed

according to a general distribution B, with a mean service time of
1

b

 . The CDF of the service time

is ()B x Prob B x , and its pdf is ()b x . The LST of service time is

 *

0
() ()sxB s e b x dx

Residual task service time is the time interval from an arbitrary point (an arrival point in a Poisson

process) during a service time to the end of the service time; we denote it as B . Elapsed task service

time is the time interval from the beginning of a service time to an arbitrary point of the service time; we

denote it as B . It can be shown that both residual and elapsed task service times have the same

probability distribution, the LST of which can be calculated as [35]

*

* * 1 ()
() ()

B s
B s B s

sb

 (1.2)

The traffic intensity may be defined as

g

m

For practical reasons and ergodicity condition, we assume that 1 . If at the moment of super-task

arrival the input queue doesn't have enough space for whole super-task, the super-task would be lost. We
also consider total rejection policy for servicing [36] in which the service time of whole tasks in a super-
task start at the same time on different servers; in other words, if number of idle servers is less than super-
task size then those idle servers remain unused till other servers become free and then the super-task can
be fit in servers. Here the waiting time for the first, last and any arbitrary tasks in a super-task is identical
because all of them get into service at the same time.

THE EMBEDED PROCESSES

The number of tasks in a cloud center during the operation hours can be considered as a collection of
random variables that are indexed by time, collectively, referred to as a stochastic process. Such original
process is non-Markovian since the service time of tasks is not exponentially distributed. However, arrival
points have the property that all past states information is irrelevant in determining the future of the
process at such epochs. Therefore we may define an embedded semi-Markov process at super-task arrival
instances for characterization of the system. We also introduce another process, an embedded Markov
process that imitates the original process in a discrete manner, namely, at the instants of super-task
arrivals. More specifically, the value of embedded Markov process will be changed only at super-task
arrivals. Fig. 1 shows a sample path of original, semi-Markov and Markov processes schematically. With
regards to embedded Markov process, we may also recognize an embedded Markov chain at super-task
arrivals. Note that in the embedded Markov process the next event after last arrival is the next super-task
arrival as opposed to embedded semi-Markov process in which the next event is the next task departure or
super-task arrival. The associated embedded Markov chain is shown in Fig. 2, where states are numbered
according to the number of tasks currently in the system (i.e., those in service and those awaiting service).
For clarity, some transitions are not fully drawn.

 7

Figure 1: A sample path of the original process, embedded semi-Markov process and embedded Markov
process

We employ the embedded Markov chain to identify the steady-state distribution of number of tasks in the
system at super-task arrivals. However the transition probabilities of the embedded Markov chain cannot
be exactly determined due to intractable behavior of the embedded semi-Markov process (ESMP). More
precisely, in order to determine the associated transition probabilities we need to count the number of task
departures between two super-task arrivals; however such counting process is intractable so that we need
to resort to approximation. As a result, the embedded Markov chain models the system approximately at
super-tasks arrival instances. The approximate embedded Markov chain (aEMC) is more elaborated in
Transition Matrix section where we calculate the transition probabilities.

Figure 2: Embedded Markov chain associate with the embedded Markov process.

Let nA and 1nA indicate the moment of thn and (1)thn super-task arrivals to the system, respectively,

while nq and 1nq indicate the number of tasks found in the system immediately before these arrivals. If k

is the size of super-task and 1nv indicates the number of tasks which depart from the system between nA

and 1nA , the following holds:

 1 1n n nq q v k (1.3)

We need to calculate the transition probabilities associated with aEMC, defined as

 1(, ,) | andn n gP i j k Prob q j q i X k
 (1.4)

i.e., the probability that i k j customers are served during the interval between two successive super-

task arrivals. Such counting process requires the exact system behavior between two super-task arrivals.
Obviously for j i k ,

 (, ,) 0P i j k (1.5)

Since there are at most i k tasks present between the arrival of nA and 1nA . For calculating the other

transition probabilities associated with aEMC, we need to identify the distribution function of residence
time for each state in ESMP. We now describe the residence times for states in the ESMP.

 Case 1: The state residence time for the first departure is remaining service time, ()B x , since

the last arrival is a random point in the current task's service time.

 Case 2: If the second departure is from the same server then clearly the state residence time is the

service time (()B x).

 Case 3: No departure between two super-task arrivals as well as the last departure before the next

arrival makes the state residence time exponentially distributed with the mean value of
1

 .

 Case 4: If thi departure is from another server then the CDF of state residence time is ()iB x . In

Fig. 4, for instance, departure 21D takes place after departure 11D . Therefore 11D could be

considered as an arbitrary point in the remaining service time of the task in server #2; so the CDF

of residence time for second departure is 2 ()B x . As a result the LST of 2 ()B x is the same

 8

as *()B s , Eq. (1.6), though, here we have one more step in recursion. Generally, the LST of

residence times between subsequent departures from non-identical servers may be recursively
defined as follow

*
(1)*

(1)

1 ()
() , 1, 2,3,

·

i

i

i

B s
B s i

s b

 (1.6)

where

 *
(1) (1) 0[()]i i s

d
b B s

ds

To maintain the consistency in notation we may define the followings:

 0b b

 * *
0 () ()B s B s

 * *
1 () ()B s B s

Let ()kR x denotes the CDF of residence times at state k in ESMP:

(), Case 1

(), Case 2
()

(), Case 3

(), Case 4 2,3,

k

i

B x

B x
R x

A x

B x i

 (1.7)

Figure 3: System behavior between two observation points and all possible state residence times.

DEPARTURE PROBABILITIES

To find the elements of the transition probability matrix, we need to count the number of tasks departing
from the system in the time interval between two successive super-task arrivals. Therefore at first step, we

need to calculate the probability of having k arrivals during the residence time of each state. Let nB , nB

and (2,3,)n
iB i indicate the number of arrivals during residence times: ()B x , ()B x and ()iB x

respectively. Due to Poisson arrivals we may define the following probabilities:

0

0

0

0

()
Prob[] ()

!

()
Prob[] ()

!

()
Prob[] ()

!

()
Prob[] ()

!

k
n x

k

k
n x

k

k
n x

k

k
n x

ik i i

x
B k e dB x

k

x
B k e dB x

k

x
A k e dA x

k

x
B k e dB x

k

 (1.8)

In fact we are interested in the probability of having no arrival; because using those probabilities, we are
able to calculate the transition probabilities in aEMC.

 9

*
0

0

*
0

0

* *
0

0

*
0 2

0

Prob[0] () ()

Prob[0] () ()

Prob[0] () () ()

Prob[0] () ()

n x
x

n x
y

n x
z

n x
ix i i

xy x y

P B e dB x B

P B e dB x B

P A e dA x A A

P B e dB x B

P P P

 (1.9)

Note that 1x xP P . We may also define the probability of having no departure between two super-task

arrivals. Let A be an exponential random variable with the parameter of and B be a random variable

which is distributed according to ()B x (remaining service time). The probability of having no departure

is equal to Prob[]A B :

0

0 0 0

0
0 0

0 0

*

{ | } ()

{ } () ()

1 () (1) ()

() ()

1 () 1

z

x

x
y

x x y

xy x

y
x

x

x

P Prob A B P A B B x dB x

P A x dB x e dy dB x

e dB x e dB x

dB x e dB x

B P

 (1.10)

Using probabilities xP , yP , xyP , ixP and zP we may define the transition probabilities for aEMC.

TRANSITION MATRIX

Based on servicing policy, we may identify four different regions of operation for which different
conditions hold. The numbers on rows and columns correspond to the number of tasks in the system
immediately before a super-task arrival (i) and immediately upon the next super-task arrival (j),
respectively. We also have k in transition probability which indicates the size of super-task. Each region
has a specific transition probability equation that depends on current state, i, next state, j, batch size, k,
and number of departures between two super-task arrivals. Note that for all regions if i k j the

following is held:

 (, ,) zP i j k P (1.11)

 10

REGION 1

In this region, the input queue is empty and remains empty until next arrival; the transitions originate and
terminate on the states that are on the left hand side of state m (i.e., lower than m). Let us denote the
number of tasks which depart from the system between two super-task arrivals as ()w k i k j .

For ,i j m , the transition probability is

(, ())
()

0

(, ())
()

(1) , if
()

(, ,)

(1) · (1)

 , i f
)

(

min i w k
w k j

x x
z

LL

min i w k
z i z w k z z i j

x x xy xy
z i k m

i k
P P i k m

w k

P i j k

i k
P P P P i k m

z w k z

 (1.12)

REGION 2

In this region, the queue is empty before the transition, but not empty afterwards, which means that
transitions originate below state m and terminate above it: ,i m j m . In this case the arriving super-

task can't be accommodated in the idle servers so it will be queued. Transition probabilities are

 () ()
1(, ,) (1) ·(1)w k i w k

LH s sx xP i j k i s P P
 (1.13)

NUMBER OF IDLE SERVERS

To calculate the transition probabilities for regions 3 and 4, we may need to know the probability of
having i idle servers out of m. Note that the total rejection policy, explained in Introduction section,
means that a super-task may have to wait even if there are some free servers; this happens when the
number of idle servers is smaller than the number of tasks in the super-task at the head of the queue. In
other words, in order to count the number of departures, the real service rate of the system should be
determined.

Suppose that we have a Poisson batch arrival process in which the batch size is a generally distributed
random variable. Each arriving batch is stored in a finite queue. Storing the arrival batches in the queue
will be continued until either the queue gets full or the last arrival batch cannot be fitted in the queue. If
the queue size is t, the mean batch size is g , and the maximum batch size is equal to MBS, what is the

probability (denoted as ()iP n) of having n unoccupied spaces in the queue after all? It can be seen that

this problem can be reduced to the original (idle servers) problem easily.

It is clear that if the distribution of batch size is deterministic and equal to one, that is single arrival, then
the queue will get full eventually. However, if the batch size is generally distributed, which is the case in

our scenario, the probability ()iP n cannot be computed exactly, and an approximate solution is needed.

We have built a small simulator using object-oriented Petri net-based simulation engine Artifex by
RSoftDesign, Inc. [32], and simulated the queue size for different mean batch sizes; the queue size was

fixed at 200m , as the results indicate that it has virtually no impact on the probability ()iP n . The

experiment was performed one million times, and the resulting probability distribution is shown in Fig. 6.

 11

Figure 4: Probability of having n idle servers for different batch sizes (()iP n).

The shape indicates exponential dependency so we have used the interpolation software Curve Expert [8]
to find the parameter values that give the best fit. The parameter values that give the best fit for the

exponential function bxae are shown in Table 2, for different values of mean batch size; in all cases, the
approximation error remains below 0.18%.

Table 2: Parameters for exponential curves: bxae
batch size 2 4 6 8

A 5.154051E-01 2.725053E-01 1.839051E-01 1.393975E-01

 B -6.918772E-01 -2.913967E-01 -1.825455E-01 -1.334660E-01

This allows us to define the transition probabilities for region 3 and 4 in transition probability matrix.

REGION 3

Region 3 corresponds to the case where the queue is not empty throughout the inter-arrival time,
i.e., ,i j m . In this case all transitions start and terminate at a state above m in Fig. 2, and the state

transition probabilities can be approximately computed as

1 1

1

1 1

2 2

1 2 1

min((),)

(1) min((),1) 1

min(, ())

2 2 1
(0, 1) min(() ,1) 2

1 2

(, ,) (1) · ()·

(1) · ()·

()

w km
s s

HH x x i
m M BS s w k

m s w k s
s s
x x i

max m s M BS s w k s

P i j k P P P m
s

P P P m s
s

w k s s

1 2

1 2 1 2

1 2

() ()
3 3

(0, 1)

1 2

(1) ·

()

m s s
w k s s w k s s
x x

max m s s M BS

i

P P

P m s s

 (1.14)

Note that under moderate load it is not likely to have more than a couple of task departures from a single
server.

REGION 4

Finally, region 4, in which i m and j m , describes the situation where the first arrival nA finds non-

empty queue which it joins while at the time of the next arrival (1nA) there are j tasks in the system, all

of which are in service and the system has at least one idle server. The transition probabilities for this
region are

 12

1 1

1

1 1

2 2

1 2 1

min((),)

(1) min(0,) 1

min(, ())

2 2 1
(0, 1) min(() ,) 2

1 2

(, ,) (1) · ()·

(1) · ()·

()

w km
s s

HL x x i
m M BS s j

m s w k s
s s
x x i

max m s M BS s w k s j

P i j k P P P m
s

P P P m s
s

w k s s

1 2

1 2 1 2

1 2

() ()
3 3

(0, 1)

1 2

(1) ·

()

m s s
w k s s w k s s
x x

max m s s M BS

i

P P

P m s s

 (1.15)

EQUILIBRIUM BALANCE EQUATIONS

After finding matrix P we can establish the balance equations. Such balance equations will have a unique
steady state solution if the corresponding Markov chain is ergodic. The balance equations

max[0,]

, 0
m r

i j ji
j i M BS

p i m r

 (1.16)

That augmented by the normalization equation

0

1.
m r

i
i

 (1.17)

make the equations set. So far we have 2m r equations which includes 1m r linearly independent

equations from (1.16) and one normalization equation from (1.17); however we have 1m r

variables 0 1 2, , , , m r ; so in order to obtain the unique equilibrium solution we need to remove

one of the equations; the wise choice would be the last equation in (1.16) due to minimum information
this equation holds about the system in comparison with the others. Here, the steady state balance
equations can't be solved in closed form, hence we must resort to a numerical solution.

DISTRIBUTION OF NUMBER OF TASKS IN THE SYSTEM

Once we obtain the steady state probabilities we are able to establish the PGF for the number of tasks in
the system at the time of a super-task arrival:

0

()
m r

k
z

k

z z

 (1.18)

Due to batch arrival, the PASTA property doesn't hold; thus, the PGF ()z of the distribution of number

of tasks in system at arrival times is not the same with PGF ()P z for distribution of number of tasks in

system at any arbitrary time.

DISTRIBUTION OF NUMBER OF TASKS IN THE SYSTEM AT ANY ARBITRARY

TIME

In order to obtain steady-state distribution at arbitrary time, we employ a technique similar to semi-
Markov process in [35]. We use the approximate embedded Markov process (aEMP) at super-task arrival

 13

points. The aEMP imitates the original process but it will be updated just at the arrival instants. Let

()kH x be the CDF of the residence time that aEMP stays in the state k:

 1() [|] 1 , 0,1, 2,...,x
k n n nH x Prob t t x q k e k m r

 (1.19)

this in our system does not depend on n. The mean residence time in state k is

0

1
[1 () , 0,1,2,.] ..,k kH x dh kx m r

 (1.20)

and the steady-state distribution in aEMP is given by [35].

0 0

1/

sm k k k
k km r m r

j j j
j j

h
p

h

 (1.21)

where{ ; 0,1, ..., }k k m r is the distribution probability at aEMC. So the steady-state probability of

aEMP is identical with the embedded aEMC. We now define the CDF of the elapsed time from the most
recent observing point looking form an arbitrary time by

0

1
() , 0,1, 2,[1 (..) .] ,k

y

k

k

H xH y k m r
h

 (1.22)

the arbitrary-time distribution is given by

0

Prob[changes in that bring the state from to] () (, ,0)
m r m r

sm
i j j j

j i j i

p p y j i dH y P j i

 (1.23)

The PGF of the number of tasks in system is given by

0

()
m r

i
i

i

P z p z

 (1.24)

Mean number of tasks in the system, then, obtained as
 (1)p P (1.25)

BLOCKING PROBABILITY

Since arrivals are independent of buffer state and the distribution of number of tasks in the system was
obtained, we are able to directly calculate the blocking probability of a super-task in the system with
buffer size of r:

1

0 0

() (1 ()) · ()
M BS M BS

b m r i k i
k i

P r p G i P k

 (1.26)

The appropriate buffer size, rò , in order to have the blocking probability below the certain value, ò, is:

 { 0 | () & (1) }b br r P r P r ò ò (1.27)

 14

PROBABILITY OF IMMEDIATE SERVICE

Here we are interested in the probability with that super-tasks will get into service immediately upon
arrival, without any queuing. For such super-tasks, the response time would be equal to the service time:

1 1

0 0 1

() · ()
M BS m k MBS m k

nq j i i
k j i m k M BS

P p p G m k i P k

 (1.28)

DISTRIBUTION OF RESPONSE AND WAITING TIME

Let W denote the waiting time in the steady state, and similarly let *() and ()W x W s be the CDF, of W

and it’s LST, respectively. For the [] / / /xM G m m r systems the queue length has the same distribution

asW , the number of tasks which arrive during the waiting time:

 *() ((1))eQ z W z (1.29)

where (1)e bP .

The left hand side of (1.30) in our system can be calculated as:

1

(1) 0

() · ()
m m r

k
k k i

m M BS k k

Q z p p z P m

 (1.30)

Hence, we have

 *
1 (/)() () | (1 /)

ez s eW s Q z Q s (1.31)

Moreover, the LST of response time is

 * * *() () ()T s W s B s (1.32)

where *()B s is the LST of service time. The i th moment, ()it , of the response time distribution is given

by

 () 1 *()

0 0

() [1 ()] (1) (0) 2,3, 4,i i i i it x dT x i x T x dx T i

 (1.33)

Using the moments we can calculate standard deviation as [13]:

(2) 2

T t t (1.34)

Skewness as:

(3) 2 3

3

3 T

T

t t t
sk

 (1.35)

And kurtosis as:

(4) (3) (2) 2 4

4

4 6 3
3

T

t t t t t t
ku

 (1.36)

 15

NUMERICA VALIDATION

The resulting balance equations of analytical model have been solved using Maple 15 from Maplesoft,
Inc. [28]. To validate the analytical solution, we have built a discrete event simulator of the cloud server
farm using the Artifex engine [32].

We have configured a cloud center with 200 servers and the capacity of 300 tasks (200 servers plus 100
of input queue space). Traffic intensity was set to 0.85 , which may seem too high but could easily be

obtained in private cloud centers or public centers of small/medium size providers. Task service time is
assumed to have Gamma distribution, while the distribution of batch size is assumed to be geometric. We
set the maximum batch size as 2 1M BS g (truncated geometrically distributed batch sizes). We chose

2 1g for maximum batch size because in any cloud center usually there is an upper limit for number of

requesting servers by a customer; if a customer needs more servers he has to submit another request.
Gamma distribution is chosen because it allows the coefficient of variation to be set independently of the
mean value. Two values are used for CoV; the low value, 0.5CoV , which results in hypo-

exponentially distributed service time and the higher value 1.4CoV , which results in hyper-
exponentially distributed service time. In all plots, the simulation and analytical results are labeled with
Sim and AM, respectively.

The mean number of tasks in the system and queue are shown in Fig. 7. As can be seen, the queue size
increases as the size of batches get increased whereas the mean number of tasks in the system gets
decreased at the same time; such a behavior may be attributed to the total rejection policy, which lets
some servers to remain idle even though there are some super-tasks in the queue.

Figure 5a: Mean number of tasks in the system.
Figure 5b: Mean queue length.

Figure 5: Number of tasks in the system and queue for a cloud center with 200 servers and capacity of
300.

We also compute the blocking probability, and the results are shown in Fig. 8a. The blocking probability
increases as the size of batches get increased. Since the percentage of tasks which can get immediately
into service is an important non-functional service property in the service level agreement (SLA), we also
calculate the probability of immediate service (which might be termed availability); the result, see Fig. 8b,
indicates that the larger the batch size results in the lower the probability of immediate service.

Figure 6a: Blocking probability.
Figure 6b: Probability of getting immediate service.

Figure 6: Probability of queuing and immediate service with regard to batch sizes.

We compute the system response time and queue waiting time for super-tasks. Note that, because of the
total rejection policy, the response and waiting times for super-tasks are identical to those individual tasks
within the super-task. As depicted in Fig. 9, response time, which is the sum of waiting time and service
time, and waiting time are increased linearly at the same rate while the size of batches is getting larger;
the reason is that because large super-tasks are more likely to remain longer in the queue in order to be
fitted on the idle servers due to the total rejection policy.

Figure 7a: Response time.

 16

Figure 7b: Waiting time in queue.

Figure 7: Response time and waiting time in queue.

Overall, the results suggest that performance is worse when the service time is hyper-exponentially
distributed (i.e., 1.4CoV). To obtain further insight into cloud center performance, we also calculate the

higher moments of response time, as shown in Fig. 10. Standard deviation, shown in Fig 10a, increases as
the size of batches gets increased. Moreover, response time is more dispersed when the service time of
tasks is hyper-exponentially distributed.

Figure 8a: Standard Deviation
Figure 8b: Skewness.
Figure 8c: kurtosis.
Figure 8: Higher moment related performance metrics.

Skewness is a measure of symmetry of a distribution around the mean; a value of zero indicates a fully
symmetric distribution, while positive/negative values indicate that the tails are longer on the left/right
hand side of the mean, respectively. Skewness, shown in Fig. 10b, is rather high, and increases as batch
size and/or CoV of service time set to large values. This indicates that, the higher the CoV of service
time distribution, the longer the tail of the response time distribution will be. Kurtosis indicates whether
the distribution is more `peaked' or `flat' with respect to the normal distribution with the same mean and
standard deviation. As can be seen from Fig. 10c, kurtosis is high which indicates the response time

distribution is relatively peaked around the mean. However, the values obtained for 1.4CoV is much

higher than the corresponding values for 0.5CoV .

The last two diagrams imply that, in practice, the response time will increase rapidly, have a very
pronounced mean value, and then decrease slowly with a rather long tail. A long tail means that some
super-tasks may experience much longer response time than the others, esp. when the input traffic
consists of super-tasks with widely varying service times and/or large number of tasks in a super-tasks.
Consequently, a non-negligible portion of super-tasks will experience extremely long delays, or even
blocking, which may be unacceptable for cloud operators, in private as well as in public clouds.

FUTURE RESEARCH DIRECTIONS

In future, we plan to extend our model for other submission/servicing policies such as partial acceptance.
We also plan to investigate the possibility of dynamic allocation of servers to sub-centers, as well as the
charging policies that can bring additional incentives for customers whilst maximizing the profit for cloud
providers.

CONCLUSION

Performance evaluation of cloud centers is a crucial task for cloud center providers, as it allows them to
tailor their SLAs to the terms they are able to efficiently provide to their customers. In this chapter, we
have described the first analytical model for performance evaluation of a cloud computing center under
batch arrivals and total rejection policy. To accurately model the cloud environment, we have assumed
generally distributed service time for each task within super-tasks, general distribution for the batch size,
and a large number of servers. We have solved the approximate model and validated it through
simulations. Our results show that the proposed method provided a quite accurate computation of
important performance indicators such as the mean number of tasks in the system, queue length, mean
response and waiting time, blocking probability and the probability of immediate service under batch

 17

arrival and total rejection policy for both admission and servicing. The distribution of response time is
also characterized and thus proper configuration for a cloud center was proposed.

Our findings also show that cloud centers which allow requests with widely varying service times may
impose longer waiting time on its clients, and lower chance of getting immediate service, while having its
servers less utilized, compared to equivalent centers which deal with certain types of tasks. Moreover the
bigger batches lead to longer waiting times and less utilization, thereby making operation more costly for
the cloud provider.

 18

REFERENCES

[1] Amazon Elastic Compute Cloud (2010). User Guide. Amazon Web Service LLC or its affiliate, API
Version edition.

[2] Bertsimas, D. (1988). An exact FCFS waiting time analysis for a general class of G/G/s queueing
systems. Queuing Systems, 3:305–320.

[3] Bertsimas, D. (1990). An analytic approach to a general class of G/G/s queueing systems. Operations
Research, 38(1):139–155.

[4] Borst, S. C. (1995). Optimal probabilistic allocation of customer types to servers. SIGMETRICS
Perform. Eval. Rev., 23:116–125.

[5] Boxma, O. J., Cohen, J. W., and Huffel, N. (1979). Approximations of the mean waiting time in an
M/G/s queuing system. Operations Research, 27:1115–1127.

[6] Corral-Ruiz, A., Cruz-Perez, F., and Hernandez-Valdez, G. (2010). Teletraffic model for the
performance evaluation of cellular networks with hyper-erlang distributed cell dwell time. In Vehicular
Technology Conference (VTC 2010-Spring), IEEE 71st, pages 1–6.

[7] Cosmetatos, G. P. (1978). Some practical considerations on multi-server queues with multiple poisson
arrivals. Omega, 6(5):443–448.

[8] CurveExpert (2011). Curveexpert professional 1.1.0. Website. http://www.curveexpert.net.

[9] Federgruen, A. and Green, L. (1984). An M/G/c queue in which the number of servers required is
random. Journal of Applied Probability, 21(3):583–601.

[10] Fu, J., Hao, W., Tu, M., Ma, B., Baldwin, J., and Bastani, F. (2010). Virtual services in cloud
computing. In IEEE 2010 6th World Congress on Services, pages 467–472, Miami, FL.

[11] Grimmett, G. and Stirzaker, D. (2010). Probability and Random Processes. Oxford University Press,
3rd edition.

[12] Hokstad, P. (1978). Approximations for the M/G/m queues. Operations Research, 26:510–523.

[13] Joanes, D. N. and Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. Journal
of the Royal Statistical Society: Series D (The Statistician), 47(1):183–189.

[14] Khazaei, H., Mišić, J., and Mišić, V. B. (2010). Performance analysis of cloud computing centers. In
7th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and
Robustness, QShine, Houston, TX.

[15] Khazaei, H., Mišić, J., and Mišić, V. B. (2011a). Modeling of cloud computing centers using M/G/m
queues. In The First International Workshop on Data Center Performance, Minneapolis, MN.

[16] Khazaei, H., Mišić, J., and Mišić, V. B. (2011b). On the performance and dimensioning of cloud
computing centers. In Wang, L., Ranja, R., Chen, J., and Benatallah, B., editors, Cloud computing:
methodology, system, and applications, chapter 8, pages 151–165. FL: CRC Press, Boca Raton.

 19

[17] Khazaei, H., Mišić, J., and Mišić, V. B. (2011c). Performance analysis of cloud centers under burst
arrivals and total rejection policy. In Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, pages 1–6.

[18] Khazaei, H., Mišić, J., and Mišić, V. B. (2012a). A fine-grained performance model of cloud
computing centers. IEEE Transactions on Parallel and Distributed Systems, 99(PrePrints):1.

[19] Khazaei, H., Mišić, J., and Mišić, V. B. (2012b). Performance analysis of cloud computing centers
using M/G/m/m + r queuing systems. IEEE Transactions on Parallel and Distributed Systems, 23(5):1.

[20] Khazaei, H., Mišić, J., Mišić, V. B., and Beigi Mohammadi, N. (2012c). Availability analysis of
cloud computing centers. In Globecom 2012-Communications Software, Services and Multimedia
Symposium (GC12 CSSM), Anaheim, CA, USA.

[21] Khazaei, H., Mišić, J., Mišić, V. B., and Rashwand, S. (2012d). Analysis of a pool management
scheme for cloud computing centers. IEEE Transactions on Parallel and Distributed Systems,
99(PrePrints).

[22] Kimura, T. (1983). Diffusion approximation for an M/G/m queue. Operations Research, 31:304–321.

[23] Kimura, T. (1996a). Optimal buffer design of an M/G/s queue with finite capacity. Communications
in Statistics Stochastic Models, 12(6):165–180.

[24] Kimura, T. (1996b). A transform-free approximation for the finite capacity M/G/s queue. Operations
Research, 44(6):984–988.

[25] Kimura, T. and Ohsone, T. (1984). A diffusion approximation for an M/G/m queue with group
arrivals. Management Science, 30(3):381–388.

[26] Kleinrock, L. (1975). Queueing Systems, volume 1, Theory. Wiley-Interscience.

[27] Ma, B. N. W. and Mark, J. W. (1998). Approximation of the mean queue length of an M/G/c queuing
system. Operations Research, 43:158–165.

[28] Maplesoft, Inc. (2012). Maple 15. Waterloo, ON, Canada.

[29] Miyazawa, M. (1986). Approximation of the queue-length distribution of an M/GI/s queue by the
basic equations. Journal of Applied Probability, 23:443–458.

[30] Nozaki, S. A. and Ross, S. M. (1978). Approximations in finite-capacity multi-server queues with
poisson arrivals. Journal of Applied Probability, 15:826–834.

[31] Patrizio, A. (2011). IDC sees cloud market maturing quickly. Datamation.

[32] RSoft Design (2003). Artifex v.4.4.2. RSoft Design Group, Inc., San Jose, CA.

[33] Sethuraman, J. and Squillante, M. S. (1999). Optimal stochastic scheduling in multiclass parallel
queues. SIGMETRICS Perform. Eval. Rev., 27:93–102.

[34] Smith, J. M. (2003). M/G/c/K blocking probability models and system performance. Perform. Eval.,
52:237–267.

 20

[35] Takagi, H. (1991). Queuing Analysis, volume 1: Vacation and Priority Systems. North-Holland,
Amsterdam, the Netherlands.

[36] Takagi, H. (1993). Queuing Analysis, volume 2: Finite Systems. North-Holland, Amsterdam, The
Netherlands.

[37] Takahashi, Y. (1977). An approximation formula for the mean waiting time of an M/G/c queue. J.
Operational Research Society, 20:150–163.

[38] Tijms, H. C. (1992). Heuristics for finite-buffer queues. Probability in the Engineering and
Informational Sciences, 6:277–285.

[39] Tijms, H. C., Hoorn, M. H. V., and Federgru, A. (1981). Approximations for the steady-state
probabilities in the M/G/c queue. Advances in Applied Probability, 13:186–206.

[40] Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner, M. (2008). A break in the clouds:
towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39:50–55.

[41] Wang, L., von Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., and Fu, C. (2010). Cloud
computing: a perspective study. New Generation Computing, 28:137–146.

[42] Xiong, K. and Perros, H. (2009). Service performance and analysis in cloud computing. In IEEE
2009 World Conference on Services, pages 693–700, Los Angeles, CA.

[43] Yang, B., Tan, F., Dai, Y., and Guo, S. (2009). Performance evaluation of cloud service considering
fault recovery. In First Int’l Conference on Cloud Computing CloudCom 2009, pages 571–576, Beijing,
China.

[44] Yao, D. D. (1985a). Refining the diffusion approximation for the M/G/m queue. Operations
Research, 33:1266–1277.

[45] Yao, D. D. (1985b). Some results for the queues Mx/M/c and GIx/G/c. Operations Research Letters,
4(2):79–83.

[46] Benson, T and Akella, A and A. Maltz, D.A. Network traffic characteristics of
data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement (IMC '10). ACM, New York, NY, USA, 2010, 267-280.

 21

ADDITIONAL READING

[1] Alam, S., Barrett, R., Bast, M., Fahey, M. R., Kuehn, J., McCurdy, C., Rogers, J., Roth, P., Sankaran,
R., and Vetter, J. S. (2008). Early evaluation of IBM BlueGene. 2008 SC International Conference for
High Performance Computing Networking Storage and Analysis, pages 1–12.

[2] Baig, A. (2010). UniCloud Virtualization Benchmark Report. White paper.
http://www.oracle.com/us/technologies/linux/intel-univa-virtualization-400164.pdf.

[3] Cao, J., Zhang, W., and Tan, W. (2012). Dynamic control of data streaming and processing in a
virtualized environment. Automation Science and Engineering, on IEEE Transactions, 9(2):365–376.

[4] Deelman, E., Singh, G., Livny, M., Berriman, B., and Good, J. (2008). The cost of doing science on
the cloud: The montage example. 2008 SC International Conference for High Performance Computing
Networking Storage and Analysis, C (Nov.):1–12.

[5] Duy, T. V. T., Sato, Y., and Inoguchi, Y. (2010). Performance evaluation of a green scheduling
algorithm for energy savings in cloud computing. In Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), on 2010 IEEE International Symposium, pages 1–8.

[6] Feitelson, D. G. (2012). Workload Modeling for Computer Systems Performance Evaluation.
Jerusalem, Israel. Version 0.36.

[7] Gandhi, A., Gupta, V., Harchol-Balter, M., and Kozuch, M. A. (2010). Optimality analysis of energy-
performance trade-off for server farm management. Performance Evaluation, 67(11):1155–1171.

[8] Hewlett-Packard Development Company, Inc. (2012). An overview of the VMmark benchmark on HP
Proliant servers and server blades. White paper.
ftp://ftp.compaq.com/pub/products/servers/benchmarks/VMmark_Overview.pdf.

[9] Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., and Epema, D. (2011a).
Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing. IEEE
Transactions on Parallel and Distributed Systems, 22(6):931–945.

[10] Iosup, A., Yigitbasi, N., and Epema, D. (2011b). On the performance variability of production cloud
services. In 11th IEEE/ACM Interna-tional Symposium on Cluster, Cloud and Grid Computing, pages
104–113.

[11] Kameda, H., Li, J., Kim, C., and Zhang, Y. (1997). Optimal load balancing in distributed computer
systems. Springer, London, UK.

[12] Kieffer, S., Spencer, W., Schmidt, A., and Lyszyk, S. (2003). Planning a Data Center. white paper.
http://www.nsai.net/White_Paper-Planning_A_Data_Center.pdf

[13] Li, K. (1998). Optimizing average job response time via decentralized probabilistic job dispatching
in heterogeneous multiple computer systems. The Computer Journal, 41(4):223–230.

[14] Li, K. (2002). Minimizing the probability of load imbalance in heterogeneous distributed computer
systems. Mathematical and Computer Modelling, 36(9-10):1075–1084.

 22

[15] Martinello, M., Kaniche, M., and Kanoun, K. (2005). Web service availability–impact of error
recovery and traffic model. Reliability Engineering System Safety, 89(1):616.

[16] Meisner, D., Gold, B. T., and Wenisch, T. F. (2009). Powernap: eliminating server idle power.
SIGPLAN Not., 44(3):205–216.

[17] NephoScale (2012). The NephoScale Cloud Servers. Website.
http://www.nephoscale.com/nephoscale-cloud-servers.

[18] Palankar, M. R., Iamnitchi, A., Ripeanu, M., and Garfinkel, S. (2008). Amazon S3 for science grids:
a viable solution? Proceedings of the 2008 international workshop on Dataaware distributed computing
DADC 08, pages 55–64.

[19] Saini, S., Talcott, D., Jespersen, D., Djomehri, J., Jin, H., and Biswas, R. (2008). Scientific
application-based performance comparison of sgialtix 4700, IBM power5+, and SGI ICE 8200
supercomputers. 2008 SC International Conference for High Performance Computing Networking
Storage and Analysis, pages 1–12.

[20] Sato, N. and Trivedi, K. S. (2007). Stochastic modeling of composite web services for closed-form
analysis of their performance and reliability bottlenecks. Service Oriented Computing ICSOC 2007, pages
107–118.

[21] SearchDataCenter.com (2008). The data center purchasing intentions survey report. Special Report.
http://searchdatacenter.techtarget.com.

[22] Shirazi, B. A., Kavi, K. M., and Hurson, A. R., editors (1995). Scheduling and Load Balancing in
Parallel and Distributed Systems. Wiley-IEEE Computer Society Press, Los Alamitos, CA, USA.

[23] Somani, G. and Chaudhary, S. (2009). Application performance isolation in virtualization. In IEEE
International Conference on Cloud Computing, CLOUD 09, pages 41–48.

[24] Tantawi, A. N. and Towsley, D. (1985). Optimal static load balancing in distributed computer
systems. J. ACM, 32:445–465.
[25] VMware, Inc. (2006). VMmark: A Scalable Benchmark for Virtualized Systems. Technical Report.
http://www.vmware.com/pdf/vmmark_intro.pdf.

[26] VMware, Inc. (2012). VMware VMmark 2.0 benchmark results. Website.
http://www.vmware.com/a/vmmark/.

[27] Walker, E. (2008). Benchmarking Amazon EC2 for high-performance scientific computing. LOGIN,
33(5):18–23.

[28] Wang, L., Zhan, J., Shi, W., Liang, Y., and Yuan, L. (2010). In cloud, do mtc or htc service providers
benefit from the economies of scale? Proceedings of the 2nd Workshop on ManyTask Computing on
Grids and Supercomputers MTAGS 09, 2:1–10.

[29] Ye, K., Jiang, X., Ye, D., and Huang, D. (2010). Two optimization mechanisms to improve the
isolation property of server consolidation in virtualized multi-core server. In 12th IEEE International
Conference on High Performance Computing and Communications (HPCC), pages
281–288.

 23

[30] Youseff, L., Wolski, R., Gorda, B., and Krintz, R. (2006). Para virtualization for hpc systems. In
Proc. Workshop on Xen in High-Performance Cluster and Grid Computing, pages 474–486. Springer.

Keyword: cloud computing, performance modeling, quality of service, response time, queuing theory,
stochastic process.

