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Cloud computing is a computing paradigm in which different computing re-
sources, including infrastructure, hardware platforms, and software applica-
tions, are made accessible to remote users as services. Successful provision
of infrastructure-as-a-service (IaaS) and, consequently, widespread adoption
of cloud computing necessitates accurate performance evaluation that allows
service providers to dimension their resources in order to fulfil the service level
agreements with their customers. In this chapter, we describe an analytical
model for performance evaluation of cloud server farms, and demonstrate the
manner in which important performance indicators such as request waiting
time and server utilization may be assessed with sufficient accuracy.
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2 Cloud Computing: methodology, system, and applications

1.1 Introduction

Significant innovations in virtualization and distributed computing, as well
as improved access to high-speed Internet, have accelerated interest in cloud
computing [19]. Cloud computing is a general term for system architectures
that involves delivering hosted services over the Internet. These services are
broadly divided into three categories: Infrastructure-as-a-Service (IaaS), which
includes equipment such as hardware, storage, servers, and networking com-
ponents are made accessible over the Internet); Platform-as-a-Service (PaaS),
which includes computing platforms—hardware with operating systems, vir-
tualized servers, and the like; and Software-as-a-Service (SaaS), which includes
sofware applications and other hosted services [2]. A cloud service differs from
traditional hosting in three principal aspects. First, it is provided on demand,
typically by the minute or the hour; second, it is elastic since the user can
have as much or as little of a service as they want at any given time; and
third, the service is fully managed by the provider – user needs little more
than computer and Internet access. Cloud customers pay only for the services
they use by means of a customized service level agreement (SLA), which is
a contract negotiated and agreed between a customer and a service provider:
the service provider is required to execute service requests from a customer
within negotiated quality of service(QoS) requirements for a given price.

Due to dynamic nature of cloud environments, diversity of user’s requests
and time dependency of load, providing expected quality of service while
avoiding over-provisioning is not a simple task [21]. To ensure that the QoS
perceived by end clients is acceptable, the providers must exploit techniques
and mechanisms that guarantee a minimum level of QoS. Although QoS has
multiple aspects such as response time, throughput, availability, reliability,
and security, the primary aspect of QoS considered in this work is related to
response time [20].

Cloud computing has been the focus of much research in both academia
and industry, however, implementation-related issues have received much more
attention than performance-related ones; here we describe an analytical model
for evaluating the performance of cloud server farms and verify its accuracy
with numerical calculations and simulations. we assume that any request goes
through a facility node and then leaves the center. A facility node may contain
different computing resources such as web servers, database servers, and oth-
ers, as shown in Fig. 1.1. We consider the time a request spends in one of those
facility node as the response time; response time does not follow any specific
distribution. Our model is flexible in terms of cloud center size and service
time of customer requests; We model the cloud environment as an M/G/m
queuing system which indicates that inter-arrival time of requests is exponen-
tially distributed, the service time is generally distributed and the number of
facility nodes is m. Also, due to the the nature of cloud environment (i.e., it is
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FIGURE 1.1
Cloud clients and service provider.

a service provider with potentially many customers), we pose no restrictions
on the number of facility nodes. These two characteristics, general service time
and large number of nodes, have not been adequately addressed in previous
research.

1.2 Related Work

Cloud computing has attracted considerable research attention, but only a
small portion of the work done so far has addressed performance issues, and the
rigorous analytical approach has been adopted by only a handful among these.
In [24], the authors studied the response time in terms of various metrics, such
as the overhead of acquiring and realizing the virtual computing resources, and
other virtualization and network communication overhead. To address these
issues, they have designed and implemented C-Meter, a portable, extensible,
and easy-to-use framework for generating and submitting test workloads to
computing clouds. Most of the research related to cloud computing has dealt
with implementation issues, while performance-related issues have received
much less attention.

In [21], the authors consider a cloud center which is modelled as the clas-
sic open network; they obtained the distribution of response time based on
assumption that inter-arrival time and service time are both exponential. Us-
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ing the distribution of response time, they found the relationship among the
maximal number of tasks, the minimal service resources and the highest level
of services.

Theoretical analyses have mostly relied on extensive research in perfor-
mance evaluation of M/G/m queuing systems [1, 3, 4, 8, 10, 11, 12, 16, 18, 23].
As solutions for distribution of response time and queue length in M/G/m
systems and M/G/m/m+r can’t be obtained in closed form, suitable approx-
imations were sought. However, most of these provide reasonably accurate es-
timates of mean response time only when number of servers is comparatively
small as well as small coefficient of variation of service time, CV, (less than
unity), but fail for large number of servers and higher CV. Approximation
errors are particularly pronounced when the offered load ρ is small, and/or
when both the number of servers m and the CV of the service time, are large
[1, 4, 18].

A closed form expression for the blocking probability in M/G/m/m + r
based on the exact solution for finite capacity exponential queues was proposed
in [14]. There are essentially two problems of interest in this paper; the first
is how to estimate the blocking probability and the second problem concerns
the allocation of buffers so that the loss/delay blocking probability will be
below a specific threshold. The building block of this approach is the exact
solution of M/M/m/m+ r queuing system so this approach is more likely to
be suitable for service time distributions for which the CV does not exceed
one.

An approximations for the mean queue length in the M/G/m/m+r queue
without deriving the distribution of number of tasks in system is proposed
in [11]. Moreover their methods were given in transform and required lots of
computation in order to be evaluated.

In [22], the cloud center was modelled as an M/M/m/m+ r queuing sys-
tem, which has been used to compute the distribution of response time. Inter-
arrival and service times were both assumed to be exponentially distributed,
and the system had a finite buffer of size m+ r. The response time was bro-
ken down into waiting, service, and execution periods, assuming that all three
periods are independent which is unrealistic, based on their own argument.

For an M/G/m/m+ r queues there is no explicit formula for probability
distribution of number of tasks in system except in a few special cases: if
G = M , r = 0 or m = 1; then the exact and close form of distribution of tasks
in system are attainable; M denotes the exponential cumulative distribution
function. However it is quite difficult to obtain explicit formula for probability
distribution of the number of tasks in the system in general case.

The author in [6] proposed a transform free approach for steady-state
queue length distribution in an M/G/m system with finite waiting space; his
approach was given in an explicit form and hence its numerical computation is
easier than that for previous approximations [3, 17]. Although the approach
is exact for M/M/m/m + r, r = 0 and reasonably accurate for general case,
apparently the method is suitable for small number of servers only.
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In [5], the author considered the problem of optimal buffer designing for
M/G/m in order to determine the smallest buffer capacity such that the rate
of lost tasks remains under predefined level. Here, Kimura used the same
approach in [6] in order to approximate the blocking probability and then
applied the approximate formula to the buffer design problem. Based on con-
vex order value, Kimura concluded that the higher the order of convexity for
service time, leads to the bigger the optimal buffer size.

As a result, the former approaches are not directly applicable to perfor-
mance analysis of cloud computing server farms where the number of servers
is huge and service request arrival distribution is not generally known.

1.3 The Analytical Model

We model a cloud server farm as a M/G/m queuing system which indicates
that the inter-arrival time of requests is exponentially distributed, the service
times of customers’ requests are independent and identically distributed ran-
dom variables with a general distribution whose service rate is µ; both µ and
CV , the coefficient of variation defined as standard deviation divided by the
mean, are finite.

A M/G/m queuing system may be considered as a Markov process which
can be analysed by applying the embedded Markov chain technique. Embed-
ded Markov Chain techique requires selection of Markov points in which the
state of the system is observed. Therefore we monitor the number of the tasks
in the system (both in service and queued) at the moments immediately be-
fore the task request arrival. If we consider the system at Markov points and
number these instances 0, 1, 2, . . . , then we get a Markov chain [7]. Here, the
system under consideration contains m servers, which render service in order
of task request arrivals.

Task requests arrival process is Poisson. Task request interarrival time A
is exponentially distributed with rate to 1

λ . We will denote its Cumulative
Distribution Function (CDF) as A(x) = Prob[A < x] and its probability
density function (pdf) as a(x) = λe−λx. Laplace Stieltjes Transform (LST) of
interarrival time is A∗(s) =

∫∞
0
e−sxa(x)dx = λ

λ+s .

Task service times are identically and independently distributed according
to a general distribution B, with a mean service time equal to b = 1

µ . The

CDF of the service time is B(x) = Prob [B < x], and its pdf is b(x). The LST
of service time is B∗(s) =

∫∞
0
e−sxb(x)dx.

Residual task service time is time from the random point in task execution
till the task completion. We will denote it as B+. This time is necessary for our
model since it represents time distribtion between task arrival z and departure
of the task which was in service when task arrival z occured. It can be shown as
well that probability distrubtion of elapsed service time (between start of the
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task execution and next arrival of task request B− has the same probability
distribtion [15].

The LST of residual and elapsed task service times can be calculated in
[15] as

B∗+(s) = B∗−(s) =
1−B∗(s)

sb
(1.1)

The offered load may be defined as

ρ ,
λ

mµ
(1.2)

For practical reasons, we assume that the system never enters saturation,
which means that any request submitted to the center will get access to the
required facility node after a finite queuing time. Furthermore, we also assume
each task is serviced by a single server (i.e., there are no batch arrivals), and
we do not distinguish between installation (setup), actual task execution, and
finalization components of the service time; these assumptions will be relaxed
in our future work.

1.3.1 The Markov chain

We are looking at the system at the moments of task request arrivals – these
points are selected as Markov points. A given Markov chain has a steady-
state solution if it is ergodic. Based on conditions for ergodicity [7] and the
above-mentioned assumptions, it is easy to prove that our Markov Chain is
ergodic. Then, using the steady-state solution, we can extract the distribution
of number of tasks in the system as well as the response time.

FIGURE 1.2
Embedded Markov points.

Let An and An+1 indicate the moment of nth and (n+ 1)th arrivals to the
system, respectively, while qn and qn+1 indicate the number of tasks found in
the system immediately before these arrivals; this is schematically shown in
Fig. 1.2. If vn+1 indicates the number of tasks which are serviced and depart
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from the system between An and An+1, the following holds:

qn+1 = qn − vn+1 + 1 (1.3)

FIGURE 1.3
State-transition-probability diagram for theM/G/m embedded Markov chain.

We need to calculate the transition probabilities associated with this
Markov chain, defined as

pij , Prob [qn+1 = j|qn = i] (1.4)

i.e., the probability that i + 1 − j customers are served during the interval
between two successive task request arrivals. Obviously for j > i+ 1

pij = 0 (1.5)

since there are at most i+1 tasks present between the arrival of An and An+1.
The Markov state-transition-probability diagram as in Fig. 1.3, where states
are numbered according to the number of tasks currently in the system (i.e
those in service and those awaiting service). For clarity, some transitions are
not fully drown, esp. those originating from states above m. We have also
highlighted the state m because the transition probabilities are different for
states on the left and right hand side of this state (i.e., below and above m).

1.3.2 Departure Probabilities

Due to ergodicity of the Markov chain, an equilibrium probability distribution
will exist for the number of tasks present at the arrival instants; so we define

πk = lim
n→+∞

Prob [qn = k] (1.6)

From [15], the direct method of solution for this equilibrium distribution re-
quires that we solve the following system of linear equations:

π = πP (1.7)
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FIGURE 1.4
System behaviour in between two arrivals.

where π = [π0, π1, π2, . . .], and P is the matrix whose elements are one-step
transition probabilities pij .

To find the elements of the transition probability matrix, we need to count
the number of tasks departing from the system in between two successive
arrivals. Consider the behaviour of the system, as shown in Fig. 1.4. Each
server has zero or more departures during the time between two successive
task request arrivals (the inter-arrival time). Let us focus on an arbitrary
server, which (without loss of generality) could be the server number 1. For
a task to finish and depart from the system during the inter-arrival time, its
remaining duration (residual service time defined in (1.1)) must be shorter
than the task inter-arrival time. This probability will be denoted as Px, and
it can be calculated as

Px = Prob [A > B+] =

∫ ∞
x=0

P{A > B+|B+ = x }P{B+ = x}

=

∫ ∞
0

e−λxdB+(x) = B∗+(λ)
(1.8)

Physically this result presents probability of no task arrivals during residual
task service time.

In the case when arriving task can be accommodated immediately by an
idle server ( and therefore queue length is zero) we have to evaluate the prob-
ability that such task will depart before next task arrival. We will denote this
probability as Py and calculate it as:

Py = Prob [A > B] =

∫ ∞
x=0

P{A > B|B = x }P{B+ = x}

=

∫ ∞
0

e−λxdB(x) = B∗(λ)
(1.9)
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However, if queue is non-empty upon task arrival following situation may
happen. If between two successive new task arrivals a completed task departs
from a server, that server will take a new task from the non-empty queue. That
task may be completed as well before the next task arrival and if the queue is
still non-empty new task may be executed, and so on until either queue gets
empty or new task arrives. Therefore probability of k > 0 job departures from
a single server, given that there are enough jobs in the queue can be derived
from expressions (1.8) and (1.9) as:

Pz,k = B∗+(λ)(B∗(λ))k−1 (1.10)

note that Pz,1 = Px.

Using these values we are able to compute the transition probabilities
matrix.

1.3.3 Transition Matrix

Based on our Markov chain, we may identify four different regions of operation
for which different conditions hold; these regions are schematically shown in
Fig. 1.5, where the numbers on horizontal and vertical axes correspond to the
number of tasks in the system immediately before a task request arrival (i)
and immediately upon the next task request arrival (j), respectively.

FIGURE 1.5
Range of validity for pij equations.
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Regarding the region labelled 1, we already know from Eq. 1.5 that pij = 0
for i+ 1 < j.

In region 2, no tasks are waiting in the queue, hence i < m and j ≤ m. In
between the two successive request arrivals, i+ 1− j tasks will complete their
service. For all transitions located on the left side of state m in Fig. 1.3, the
probability of having i+ 1− j departures is

pij =

(
i

i− j

)
P i−jx (1− Px)jPy +

(
i

i+ 1− j

)
P i+1−j
x (1− Px)j−1(1− Py)

for i < m, j ≤ m
(1.11)

Region 3 corresponds to the case where all servers are busy throughout the
inter-arrival time, i.e., i, j ≥ m. In this case all transitions remain to the right
of state m in Fig. 1.3, and state transition probabilities can be calculated as

pij =

σ∑
s=φ

(
m

s

)
P sx(1− Px)m−sP i+1−j−s

z,2 (1− Pz,2)s

for i, j ≥ m
(1.12)

In the last expression, the summation bounds are σ = min [i+ 1− j,m] and
φ = min [i+ 1− j, 1].

Finally, region 4, in which i ≥ m and j ≤ m, describes the situation where
the first arrival (An) finds all servers busy and a total of i−m tasks waiting
in the queue, which it joins; while at the time of the next arrival (An+1) there
are exactly j tasks in the system, all of which are in service. The transition
probabilities for this region are

pij =

σ∑
s=1

(
m

s

)
P sx(1− Px)m−s

(
η

α

)
Pψz,2(1− Pz,2)ζβ

for i ≥ m, j < m

(1.13)

where we used the following notation:

σ = min [m, i+ 1− j]
η = min [s, i+ 1−m]
α = min [s, i+ 1− j − s]
ψ = max [0, i+ 1− j − s]
ζ = max [0, j −m+ s]

β =

{
1 if ψ ≤ i+ 1−m
0 otherwise

(1.14)

1.4 Numerical Validation

The steady-state balance equations outlined above can’t be solved in closed
form, hence we must resort to a numerical solution. To obtain the steady-state
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probabilities π = [π0, π1, π2, ...], as well as the mean number of tasks in the
system (in service and in the queue) and the mean response time, we have
used the probability generating functions (PGFs) for the number of tasks in
the system:

P (z) =

∞∑
k=0

πzz
k (1.15)

and solved the resulting system of equations using Maple 13 from Maplesoft,
Inc. [9]. Since the PGF is an infinite series, it must be truncated for numerical
solution; we have set the number of equations to twice the number of servers,
which allows us to achieve satisfactory accuracy (as will be explained below),
plus the necessary balance equation

2m∑
i=0

πi = 1. (1.16)

the mean number of tasks in the system is, then, obtained as

E[QS] = P
′
(1) (1.17)

while the mean response time is obtained using Little’s law as

E[RT ] = E[QS]/λ (1.18)

We have assumed that the task request arrivals follow the gamma dis-
tribution with different values for shape and scale parameters; however, our
model may accommodate other distributions without any changes. Then, we
have performed two experiments with variable task request arrival rate and
coefficient of variation CV (which can be adjusted in the gamma distribution
independently of the arrival rate).

To validate the analytical solutions we have also built a discrete even simu-
lator of the cloud server farm using object-oriented Petri net-based simulation
engine Artifex by RSoftDesign, Inc. [13].

The diagrams in Fig. 1.6 show analytical and simulation results (shown
as lines and symbols, respectively) for mean number of tasks in the system
as functions of the offered load ρ, under different number of servers. Two
different values of the coefficient of variation, CV = 0.7 and 0.9, were used;
the corresponding results are shown in Figs. 1.6(a) and 1.6(b). As can be seen,
the results obtained by solving the analytical model agree very well with those
obtained by simulation.

The diagrams in Fig. 1.8 show the mean response time, again for the same
range of input variables and for the same values of the coefficient of variation.
As above, solid lines correspond to analytical solutions, while different symbols
correspond to different number of servers. As could be expected, the response
time is fairly steady up to the offered load of around ρ = 0.8, when it begins
to increase rapidly. However, the agreement between the analytical solutions
and simulation results is still very good, which confirms the validity of our
modelling approach.
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1.5 Conclusions

Performance evaluation of server farms is an important aspect of cloud com-
puting which is of crucial interest for both cloud providers and cloud cus-
tomers. In this chapter we have proposed an analytical model for performance
evaluation of a cloud computing center. Due to the nature of the cloud envi-
ronment, we assumed general service time for requests as well as large number
of servers; in the other words, our model is flexible in terms of scalability and
diversity of service time. We have further conducted numerical experiments
and simulation to validate our model. Numerical and simulation results showed
that the proposed method provided a quite accurate computation of the mean
number of tasks in the system and mean response time.

The model could be extend for burst arrivals of requests or a kind of task
including several subtasks; examining other types of distributions as service
time which are more realistic in cloud computing area, e.g. Log-Normal dis-
tribution and looking in to the facility node and breaking down the response
time into several components such as setup, execution, return and clean up
time could be another dimension of extension. The authors will address all
these issues in future work.

1.6 Glossary

Markov Process: In probability theory and statistics, a Markov process,
named after the Russian mathematician Andrey Markov, is a time-varying
random phenomenon for which a specific property (the Markov property)
holds. In a common description, a stochastic process with the Markov
property, or memorylessness, is one for which conditional on the present
state of the system, its future and past are independent.

Markov Chain: A Markov chain is a random process with the Markov prop-
erty, i.e. the property, simply said, that the next state depends only on
the current state and not on the past.

Embedded Markov Chain Technique: One method of finding the sta-
tionary probability distribution, π, of an ergodic continuous-time Markov
process, Q, is by first finding its embedded Markov chain (EMC). Strictly
speaking, the EMC is a regular discrete-time Markov chain, sometimes
referred to as a jump process. Each element of the one-step transition
probability matrix of the EMC, S, is denoted by pij , and represents the
conditional probability of transitioning from state i into state j.
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(a) CV = 0.7.

(b) V = 0.9.

FIGURE 1.6
Mean number of tasks in the system: m = 50 (denoted with squares), 100
(circles), 150 (asterisks), and 200 (crosses).
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(a) Results for CV = 0.7, m = 50 and 100 servers.

(b) Results for CV = 0.7, m = 150 and 200 servers.

FIGURE 1.7
Mean response time CV = 0.7, m = 50 (denoted with squares), 100 (aster-
isks), 150 (circles), and 200 (crosses).
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(a) Results for CV = 0.9, m = 50 and 100 servers.

(b) Results for CV = 0.9, m = 150 and 200 servers.

FIGURE 1.8
Mean response time for CV = 0.9, m = 50 (denoted with squares), 100
(asterisks), 150 (circles), and 200 (crosses).
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