
Intra-Piconet Polling Algorithms in Bluetooth

Jelena Mǐsić and Vojislav B. Mǐsić ∗

Bluetooth is an emerging standard for Wireless Personal Area Networks
(WPANs): short range, ad hoc wireless networks [1]. Originally, Bluetooth
was envisaged as a wireless cable replacement technique, which is why the
basic RF range of Bluetooth devices is only about 10 meters [2]. However,
the number of possible uses of Bluetooth have increased to include different
networking tasks between computers and computer-controlled devices such
as PDAs, mobile phones, smart peripherals, and others. However, Bluetooth
networks operate in a rather different manner from other wireless networks.
Furthermore, many important aspects of communication using Bluetooth
networks are not defined by the current Bluetooth specification [2]. Such
aspects include the manner in which the master polls its slaves, the scheduling
algorithms for Bluetooth scatternets, the preferred scatternet topology (or
topologies), and others. Quality of service is supported in a very limited
manner, too. All of these aspects, however, play a crucial role in determining
the performance of Bluetooth networks, which is ultimately one of the main
criteria for their wider acceptance in the marketplace. Performance analysis
of Bluetooth networks is an important research topic addressed by many
researchers. Yet, because of the differences from other networks, known
performance analysis results from other wireless networks cannot be directly
applied in the Bluetooth environment. In this chapter, we will review and
roughly classify existing algorithms for intra-piconet polling. We will also
describe some of the topics that deserve future research attention.

∗J. Mǐsić and V. B. Mǐsić are with the Department of Computer Science, University of
Manitoba, Winnipeg, Manitoba, Canada.

master

slaves

(a) Topology.

piconet n

master

slaves and their
uplink queues

master downlink queues

(b) Queueing model of a single pi-
conet.

Figure 1: Bluetooth piconet topology.

1 Introduction: on Bluetooth Networks and

Bluetooth Communications

As mentioned above, Bluetooth is a communication technology for short
range, ad hoc wireless networks formed by fixed or mobile devices. Bluetooth
devices must form networks before the actual communication can start [3].
The simplest network is called piconet: a small, centralized network with
up to eight active nodes or devices. One of the nodes is designated as the
master, while the others are slaves. At most seven slaves can be active at
any given time, and up to 255 others can be parked but still listening to
the communications in the piconet. This topology is shown schematically in
Fig. 1(a).

Bluetooth uses a set of RF frequencies (79 or 23, in some countries)
in the ISM band at about 2.4GHz. Frequency Hopping Spread Spectrum
(FHSS) technique is utilized in order to combat interference. Each piconet
hops through the available RF frequencies in a pseudo-random manner. The
hopping sequence, which is determined from the Bluetooth device address of
the piconet master, is known as the channel [3]. Each channel is divided into
time slots of T = 625µs, which are synchronized to the clock of the piconet
master. In each time slot, a different frequency is used.

All communications in the piconet take place under the control of the
piconet master. All slaves listen to downlink transmissions from the master.
The slave may reply with an uplink transmission if and only if addressed
explicitly by the master, and only immediately after being addressed by the

downlink:
master to a slave

time (in units of T=0.625ms)

uplink:
addressed slave to the master

master

slave i

slave j

slave k

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: TDD master-slave communication in Bluetooth. Gray triangles
denote data packets, white triangles denote empty (POLL and NULL) pack-
ets.

master. Data is transmitted in packets, which take one, three, or five slots;
link management packets also take one slot each. The RF frequency does
not change during the transmission of the packet. However, once the packet
is sent, the transmission in the next time slot uses the next frequency from
the original hopping sequence (i.e., the two or four frequencies from the
original sequence are simply skipped). By default, all master transmissions
start in even-numbered slots, whilst all slave transmissions start in odd-
numbered slots. A downlink packet and the subsequent uplink packet are
commonly referred to as a frame. Therefore, the master and the addressed
slave use the same communication channel, albeit not at the same time.
This communication mechanism, known as Time Division Duplex, or TDD
for short, is schematically shown in Fig. 2.

Because of the TDD communication mechanism, all communications in
the piconet must be routed through the master. Each slave will maintain
(operate) a queue where the packets to be sent out are stored. The master, on
the other hand, operates several such queues, one for each active slave in the
piconet. The corresponding queueing model is shown in Fig. 1(b). We note
that these queues may not physically exist, e.g., all downlink packets might
be stored in a single queue; but the queueing model provides a convenient
modeling framework which facilitates the performance analysis of Bluetooth
networks.

The master polls the slave by sending the data packet from the head of

the corresponding downlink queue. The slave responds by sending the data
packet from the head of its uplink queue. When there is no data packet to
be sent, single-slot packets with zero payload are sent – POLL packets in the
downlink, and NULL packets in the uplink direction [3]. As the process of
polling the slaves is actually embedded in the data transmission mechanism,
we will use the term ‘polling’ for every downlink transmission from the master
to a slave.

Since packets must wait at the slave and/or at the master before they
can be delivered to their destinations, the delays they experience are mainly
queueing delays. Therefore, the performance of the data traffic will be mostly
dependent on the choice of the polling scheme used by the master to poll the
active slaves in the piconet.

2 Intra-piconet polling schemes

The polling scheme is obviously the main determinant of performance of
Bluetooth piconets, and one of the main determinants of performance of
Bluetooth scatternets. As usual, the main performance indicator is the end-
to-end packet delay, with lower delays being considered as better perfor-
mance. There are, however, at least two other requirements to satisfy. First,
the piconet master should try to maintain fairness among the slaves, so that
all slaves in the piconet receive equal attention in some shorter or longer
time frame. (Of course, their traffic load should be taken into account.) Sec-
ond, Bluetooth devices are, by default, low power devices, and the polling
scheme should be sufficiently simple in terms of computational and memory
requirements.

As noted above, the current Bluetooth specification does not specifically
require or prescribe any specific polling scheme [2]. This may not seem to
be too big a problem, since optimal polling schemes for a number of similar
single-server, multiple-input queueing system are well known [4, 5]. However,
the communication mechanisms used in Bluetooth are rather specific, because

• all communications are bidirectional (i.e., there cannot exist a downlink
packet without an uplink packet, or vice versa),

• the master polls the slaves using regular packets, possibly without data
payload (i.e., all polls and responses thereto take at least one slot each),

• all slave-slave communications have to be routed through the master
(i.e., there can be no direct slave-to-slave communication), and

• the master does not know the status of queues at the slaves, because
there are no provisions for exchange of such information in the Blue-
tooth packet structure.

As the consequence, the existing results cannot be applied, and the per-
formance of different polling schemes has to be re-assessed, taking the afore-
mentioned characteristics of the Bluetooth communication mechanisms. It
should come as no surprise, then, that a number of polling schemes have been
proposed and analyzed [6, 7, 8, 9]. Many of the proposed schemes are simply
variations of the well-known limited and exhaustive service scheduling [10],
but several improved adaptive schemes have been described as well [8, 11].

In the discussion that follows, we will present a rough classification of
those polling schemes, using the following criteria. First, the polling scheme
determines the number of frames exchanged during a single visit to the slave.
This number may be set beforehand to a fixed value, or it may be dynamically
adjusted on the basis of current and historical traffic information.

Second, different slaves may receive different portions of the bandwidth;
again, the allocation may be done beforehand, or it may be dynamically
adapted to varying traffic conditions. The latter approach is probably prefer-
able in Bluetooth piconets, which are ad hoc networks formed by mobile
users, and the traffic may exhibit considerable variability. In fact, due to
users’ mobility, even the topology of the piconet may change on short notice.
At the same time, the fairness of polling may be more difficult to maintain
under dynamic bandwidth allocation.

Finally, the sequence in which slaves are visited may be set beforehand,
or it may change from one piconet cycle to another, depending on the traffic
information. Slaves that had more traffic in the previous cycle(s) may receive
a larger portion of the available bandwidth. Slave that had no traffic may
receive less bandwidth, or they may even be ignored for one or more piconet
cycles. Again, the main difficulty with such schemes is to ensure that the
fairness is maintained.

2.1 Traditional polling schemes

The simplest polling schemes use a fixed ordering of the slaves and fixed
bandwidth allocation per slave. The only variable parameter, then, is the

duration of master’s visit to each slave.
Under 1-limited service polling, the master visits each slave for exactly

one frame, and then moves on to the next slave [10]. Data packets are sent
if there are any, otherwise empty packets (POLL or NULL) are sent. The
scheme is sometimes referred to as (Pure) Round Robin [6] or simply limited
service.

Under exhaustive service polling, the master stays with the slave as long
as there are packets to exchange in either downlink or uplink direction [10].
The absence of packets is detected by a POLL-NULL frame.

Under the E-limited service polling, the master stays with a slave until
there are no more packets to exchange, or for a fixed number M of frames
(M > 1), whichever comes first [10]. Packets that arrive during the visit are
allowed to enter the uplink queue at the slave and may be serviced – provided
the limit of M frames is not exceeded [10]. This scheme is also referred to as
Limited Round Robin [6, 11].

In fact, 1-limited and exhaustive service polling may be considered as
special cases of E-limited service, where the limit M equals 1 and ∞, re-
spectively. In all three cases, the sequence of slaves is fixed and does not
change.

In traditional polling systems, exhaustive service performs better than
either 1-limited or E-limited service [4]. As Bluetooth piconets are not tra-
ditional polling systems (for reasons outlined above), hence this result does
not hold. Several authors have found that 1-limited performs better than
exhaustive service under high load [6, 12]. Furthermore, E-limited service
has been found to offer better performance than either limited or exhaustive
service, and the value of M may be chosen to achieve minimum delays for
given traffic burstiness [13].

2.2 Dynamic reordering of slaves

In fact, even better results may be obtained through the so-called Stochas-
tically Largest Queue (SLQ) policy. Under this policy, the server always
services the queue with the highest number of packets [5]. In other words,
the master should always poll the slave for which the sum of lengths of up-
link and downlink queues is the highest. However, this is not possible in
Bluetooth, as there is no way for the master to know the current status of all
of its slaves’ uplink queues. What is possible, though, is to dynamically re-
order the slave polling sequence according to the length of the corresponding

Table 1: An overview of traditional polling algorithms.
polling performance aspect

algorithm access delay end-to-end
delay

adaptivity fairness

1-limited average good (high
loads)

none inherent

exhaustive best good (low
and medium
loads)

none can be unfair

E-limited good best average inherent
(longer time
scale)

EPM [6] average good (high
loads)

downlink can be unfair

downlink queues at the master. This reordering may be done once in each
piconet cycle, or the master may always poll the slave with the longest down-
link queue. In either case, polling may be performed according to limited,
exhaustive, or even E-limited scheme.

One scheme that uses dynamic reordering is the Exhaustive Pseudo-cyclic
Master (EPM) queue length scheme, proposed in [6], where each slave is
visited exactly once per cycle. At the beginning of each cycle, however, the
slaves are reordered according to the decreasing length of downlink queues.

One problem with dynamic reordering is that fairness among the slaves
cannot be guaranteed when if reordering is done for every poll. For example,
two slaves that talk to each other might easily monopolize the network and
starve all other slaves. Fairness is easier to achieve when reordering is done
on a per cycle basis. Still, some polling schemes (such as the exhaustive
scheme) present more of a challenge than others.

Table 1 summarizes the characteristics of traditional polling schemes.

2.3 Adaptive bandwidth allocation

The duration of the visit to each slave may be adjusted according to the
current or historical traffic information. This can be done in two ways: by

rewarding slaves that have more traffic, or by penalizing slaves that have less
traffic. In the former case, the master is allowed to stay longer, and thus
exchange more frames, with the slave that has some data to send and/or
receive. In the latter case, the slave that had less traffic or no traffic at all,
or the slave which is expected to have no traffic, will simply be ignored for a
certain number of piconet cycles.

The former approach is exploited in the Limited and Weighted Round
Robin (LWRR) [6], which tries to increase efficiency by reducing the rate of
visits to inactive slaves. Initially, each slave is assigned a weight equal to the
so-called maximum priority, or MP . Each slave is polled in E-limited fashion
with up to M frames. Whenever there is a data exchange between the slave
and the master, the weight of the slave is increased to the value of MP . On
the other hand, when a POLL-NULL sequence occurs, the weight for that
particular slave is reduced by one. If the slave weight drops to one (which is
the lowest value), the slave has to wait a maximum of MP − 1 cycles to be
polled again.

A variation of this scheme, labeled Pseudo-Random Cyclic Limited slot-
Weighted Round Robin [11], uses both slave reordering and poll rate reduc-
tion. The sequence in which slaves will be polled is determined in a pseudo-
random fashion at the beginning of every cycle, and less active slaves are not
polled for a certain number of slots (not cycles). In addition, the maximum
number of frames that may be exchanged during a single visit to any slave
is limited.

Poll rate reduction is also utilized in the Fair Exhaustive Polling (FEP)
scheme [8], where a pool of ‘active’ slaves is maintained by the master. Slaves
are polled with one frame per visit, as in 1-limited service. When a POLL-
NULL frame occurs, that slave will be dropped from the pool and will not be
polled for some time. The ‘inactive’ slave may be restored to the pool when
the master downlink queue that corresponds to that slave contains a packet,
or when the entire pool is reset to its original state. The pool is reset when
the last slave in the pool is to be dropped, or after a predefined timeout.
In this manner, the slaves that have more traffic will receive proportionally
larger share of the bandwidth as long as they have traffic to send or receive.

A slightly more sophisticated approach to poll rate reduction is employed
in the scheme known as Adaptive E-Limited Polling [14]. In this case, each
slave is serviced for up to M frames during a single visit. However, the limits
are assigned to each slave separately, and they are made variable between
predefined bounds. Initially, all slaves are assigned the value of M equal to

Table 2: An overview of adaptive polling algorithms.
polling performance aspect

algorithm access delay end-to-end
delay

adaptivity fairness

LWRR [6] average good (high
loads)

good (penalizes
inactivity)

inherent

FEP [8] good bad (under
bursty traf-
fic)

good (penalizes
inactivity)

can be un-
fair

ACLS [15] good good excellent inherent
FPQ [16] good good good (but com-

putationally in-
tensive)

adjustable

the upper bound of M+. When the slave is polled and there is a data packet
sent in either direction, the current value of M for that slave is decreased by
one, until the lower bound M− is reached. When a POLL-NULL frame is
encountered, the value of M for that slave is reset to the maximum value, but
the slave will skip a certain number of cycles. In this manner, the slave that
has been idle for some time can send more data immediately after becoming
active again. In case there is continuously backlogged traffic, the service
gradually decreases to allocate a fair share of available bandwidth to each
slave.

The Adaptive Cycle-Limited Service scheme [15] strives to keep the du-
ration of the piconet cycle as close to a predefined value as possible. Band-
width is allocated dynamically, partly on the basis of historical data (i.e., the
amount of traffic in the previous piconet cycle), and partly on the basis of cur-
rent traffic (i.e., whether they have some data to exchange or not). However,
each of the m slaves is guaranteed a fair share of the available bandwidth
over the period of m− 1 piconet cycles, plus a certain minimum bandwidth
in each piconet cycle. This scheme appears well-suited for piconets in which
some of the slaves have tight bandwidth and latency constraints, as is often
the case with multimedia traffic.

We also mention the Efficient Double-Cycle polling [17], an adaptive al-
gorithm which tries to optimize performance for uplink and downlink traffic

separately; and FPQ, a predictive algorithm with rudimentary QoS support
[16].

Table 2 summarizes the characteristics of adaptive polling schemes.

3 BNEP and segmentation/reassembly poli-

cies

All of the polling schemes described above focus on the optimization of per-
formance of Bluetooth baseband traffic. As the traffic to be transported
originates from the applications running on Bluetooth and other devices, we
should also look into the details of packet segmentation and reassembly poli-
cies. As most traffic nowadays is based on the TCP family of protocols, it is
necessary to examine the ways in which such traffic can be transported over
Bluetooth. Fortunately, the Bluetooth Network Encapsulation Protocol, or
BNEP, provides a ready solution to these problems [18].

The BNEP protocol is designed to encapsulate and forward Ethernet
frames through Bluetooth networks. Multi-hop traffic, including the slave
to slave traffic, may be handled by Bluetooth masters and/or bridges acting
as store-and-forward switches. In other words, the entire TCP PDU, which
consists of a number of Bluetooth PDUs, has to be stored in the device
before being repackaged (if necessary) and forwarded to the next stop along
the route. Routing in this case is done in the IP layer, transparently to
Bluetooth. Fig. 3(a) shows the protocol stack when TCP/IP packets are
encapsulated using BNEP. The headers and their typical length are shown
in Fig. 3(b). Note that each TCP message generated will require a total of
59 bytes in appropriate headers throughout the protocol stack.

As Bluetooth baseband packets can have either one, three, or five slots
each, with varying payload of up to 339 bytes, as shown in Table 3, L2CAP
packets obviously have to be segmented into a number of baseband packets.
Upon reception, the payload has to be extracted from the baseband packets,
and the L2CAP packet has to be reassembled. Again, the Bluetooth speci-
fication offers little guidance in that respects, and several policies for packet
segmentation and reassembly have been described [8, 9].

We note that the noise and interference levels may play a critical role
in choosing the segmentation policy. The Bluetooth frequency hopping se-
quence has been shown to be fairly efficient, and a large number of Bluetooth

Networking Applications

TCP/IP

IP

BNEP

L2CAP

LMP

Bluetooth Baseband

Bluetooth Radio

(a) BNEP Protocol Stack.

Ethernet header (14) Ethernet payload (0-1500)

Ethernet payload (0-1500)BNEP header (1+)L2CAP header (4)

(b) BNEP with an Ethernet Packet payload sent using L2CAP (all field sizes
are expressed in bytes).

Figure 3: BNEP: transmission of TCP/IP traffic over Bluetooth (adapted
from [18]).

Table 3: Packet types for communication over an ACL link.

Type Slot(s) Payload FEC Asymmetric data rate
(bytes) (kbps total)

DM1 1 17 2/3 217.6
DH1 1 27 none 341.6
DM3 3 121 2/3 516.2
DH3 3 183 none 692.0
DM5 5 224 2/3 514.1
DH5 5 339 none 780.8

piconets may coexist in the same radio range [19]. Still, packets can be dam-
aged by noise and interference, in which case retransmission will be needed.
We note that in a noisy environment,

• DM-type packets, which include 2/3 Forward Error Correction (FEC),
might be preferred over DH-type packets, which have no such provi-
sions; and

• shorter (DH3 and DM3) packets might be preferred over longer ones,
despite their smaller payload, because they are less susceptible to dam-
age.

There are many issues related to the transmission of TCP/IP (and other
types of) traffic over Bluetooth that ought to be investigated in more detail, in
particular reliability, fairness, admission control, and congestion control. An
overview of the performance of difference polling algorithms in the presence
of TCP/IP traffic is given in [14].

4 Open problems and directions for further

research

This chapter presents a brief overview and classification of intra-piconet
polling schemes for Bluetooth piconets. Some additional issues, in partic-
ular the transmission of TCP/IP traffic over Bluetooth, and segmentation
and reassembly policies, are discussed as well.

The aspects of Bluetooth networking not covered here include piconet
admission control and QoS support. Also, issues related to scatternet for-
mation, operation, and maintenance, are not mentioned here. We have also
not addressed the issues related to the Bluetooth radio layer, where problems
such as noise, interference, and packet loss, may have a significant impact on
performance.

Future work might also analyze the performance of Bluetooth networks
under different traffic models, preferably those that try to mimic real life
traffic patterns for devices, such as PDAs, that are most likely candidates
for communication using Bluetooth technology. Issues related to stability,
fairness, reliable data transfer, and others, could also be addressed. Finally,
the practical implications of performance analyses on scatternet formation
and restructuring, should be examined.

We end this discussion by citing a few among the papers that contain more
detailed comparative analyses of different polling schemes. In particular, we
note an early report by Johansson et al. [8], a detailed and influential paper
by Capone et al. [6], and a more recent overview paper by Chan et al. [14].
It may also be interesting to note that the majority of authors have relied on
discrete event simulation to obtain their results. Analytical techniques have
been used only recently [12, 20], possibly because the well-known results in
the area of polling systems [5, 10] cannot be directly applied in Bluetooth.

References

[1] “Wireless PAN medium access control MAC and physical layer PHY
specification,” IEEE standard 802.15, IEEE, New York, NY, 2002.

[2] Bluetooth SIG, Specification of the Bluetooth System – Architecture &
Terminology Overview, vol. 1. Nov. 2003.

[3] Bluetooth SIG, Specification of the Bluetooth System. Feb. 2001.

[4] H. Levy, M. Sidi, and O. J. Boxma, “Dominance relations in polling
systems,” Queueing Systems Theory and Applications, vol. 6, no. 2,
pp. 155–171, 1990.

[5] Z. Liu, P. Nain, and D. Towsley, “On optimal polling policies,” Queueing
Systems Theory and Applications, vol. 11, no. 1–2, pp. 59–83, 1992.

[6] A. Capone, R. Kapoor, and M. Gerla, “Efficient polling schemes for
Bluetooth picocells,” in Proceedings of IEEE International Conference
on Communications ICC 2001, vol. 7, (Helsinki, Finland), pp. 1990–
1994, June 2001.

[7] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey, “Enhancing
performance of asynchronous data traffic over the Bluetooth wireless
ad-hoc network,” in Proceedings Twentieth Annual Joint Conference of
the IEEE Computer and Communications Societies IEEE INFOCOM
2001, vol. 1, (Anchorage, AK), pp. 591–600, Apr. 2001.

[8] N. Johansson, U. Körner, and P. Johansson, “Performance evaluation of
scheduling algorithms for Bluetooth,” in Proceedings of BC’99 IFIP TC

6 Fifth International Conference on Broadband Communications, (Hong
Kong), pp. 139–150, Nov. 1999.

[9] M. Kalia, D. Bansal, and R. Shorey, “MAC scheduling and SAR policies
for Bluetooth: A master driven TDD pico-cellular wireless system,” in
Proceedings Sixth IEEE International Workshop on Mobile Multimedia
Communications (MOMUC’99), (San Diego, CA), pp. 384–388, Nov.
1999.

[10] H. Takagi, Queueing Analysis, vol. 1: Vacation and Priority Systems.
Amsterdam, The Netherlands: North-Holland, 1991.

[11] Y.-Z. Lee, R. Kapoor, and M. Gerla, “An efficient and fair polling scheme
for Bluetooth,” in Proceedings MILCOM 2002, vol. 2, pp. 1062–1068,
2002.

[12] J. Mǐsić and V. B. Mǐsić, “Modeling Bluetooth piconet performance,”
IEEE Communication Letters, vol. 7, pp. 18–20, Jan. 2003.

[13] J. Mǐsić, K. L. Chan, and V. B. Mǐsić, “Performance of Bluetooth pi-
conets under E-limited scheduling,” Tech. report TR 03/03, Depart-
ment of Computer Science, University of Manitoba, Winnipeg, Mani-
toba, Canada, May 2003.

[14] K. L. Chan, V. B. Mǐsić, and J. Mǐsić, “Efficient polling schemes for
bluetooth picocells revisited,” in HICSS-37 Minitrack on Wireless Per-
sonal Area Networks, (Big Island, Hawaii), Jan. 2004.

[15] V. B. Mǐsić, E. W. S. Ko, and J. Mǐsić, “Adaptive cycle-limited schedul-
ing scheme for Bluetooth piconets,” in Proceedings 14th IEEE Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communica-
tions PIMRC’2003, vol. 2, (Beijing, China), pp. 1064–1068, Sept. 2003.

[16] J.-B. Lapeyrie and T. Turletti, “FPQ: a fair and efficient polling algo-
rithm with QoS support for Bluetooth piconet,” in Proceedings Twenty-
Second Annual Joint Conference of the IEEE Computer and Commu-
nications Societies IEEE INFOCOM 2003, vol. 2, (New York, NY),
pp. 1322–1332, Apr. 2003.

[17] R. Bruno, M. Conti, and E. Gregori, “Wireless access to internet via
Bluetooth: performance evaluation of the EDC scheduling algorithm,”

in Proceedings of the first workshop on Wireless Mobile Internet, (Rome,
Italy), pp. 43–49, July 2001.

[18] Bluetooth SIG, “Bluetooth Network Encapsulation Protocol (BNEP)
Specification,” tech. rep., Revision 0.95a, June 2001.

[19] S. Zürbes, “Considerations on link and system throughput of Bluetooth
networks,” in Proceedings of the 11th IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications PIMRC 2000,
vol. 2, (London, UK), pp. 1315–1319, Sept. 2000.

[20] D. Miorandi, C. Caimi, and A. Zanella, “Performance characterization of
a Bluetooth piconet with multi-slot packets,” in Proceedings WiOpt’03,
(Sophia-Antipolis, France), Mar. 2003.

