
MODELS, TECHNIQUES, AND METRICS FOR MANAGING RISK
IN SOFTWARE ENGINEERING

(Spine title: Models, Techniques, and Metrics for Managing Risk

in Software Engineering)

(Thesis format: Integrated Article)

by

Andriy V. Miranskyy

Graduate Program in Applied Mathematics

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Andriy Miranskyy, 2011

 ii

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Joint-Supervisor

Dr. Nazim H. Madhavji

Joint-Supervisor

Dr. Mark Reesor

Joint-Supervisor

Dr. Matt Davison

Examiners

Dr. Daniel M. Berry

Dr. Robert M. Corless

Dr. Christopher Essex

Dr. Stephen M. Watt

The thesis by

Andriy Miranskyy

entitled:

Models, Techniques, and Metrics for Managing Risk

in Software Engineering

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

______________________ _______________________________
 Date Chair of the Thesis Examination Board

 iii

Abstract

The field of Software Engineering (SE) is the study of systematic and quantifiable

approaches to software development, operation, and maintenance. This thesis presents a

set of scalable and easily implemented techniques for quantifying and mitigating risks

associated with the SE process. The thesis comprises six papers corresponding to SE

knowledge areas such as software requirements, testing, and management. The

techniques for risk management are drawn from stochastic modeling and operational

research.

The first two papers relate to software testing and maintenance. The first paper describes

and validates novel iterative-unfolding technique for filtering a set of execution traces

relevant to a specific task. The second paper analyzes and validates the applicability of

some entropy measures to the trace classification described in the previous paper. The

techniques in these two papers can speed up problem determination of defects

encountered by customers, leading to improved organizational response and thus

increased customer satisfaction and to easing of resource constraints.

The third and fourth papers are applicable to maintenance, overall software quality and

SE management. The third paper uses Extreme Value Theory and Queuing Theory tools

to derive and validate metrics based on defect rediscovery data. The metrics can aid the

allocation of resources to service and maintenance teams, highlight gaps in quality

assurance processes, and help assess the risk of using a given software product. The

fourth paper characterizes and validates a technique for automatic selection and

prioritization of a minimal set of customers for profiling. The minimal set is obtained

using Binary Integer Programming and prioritized using a greedy heuristic. Profiling the

resulting customer set leads to enhanced comprehension of user behaviour, leading to

improved test specifications and clearer quality assurance policies, hence reducing risks

associated with unsatisfactory product quality.

 iv

The fifth and sixth papers pertain to software requirements. The fifth paper both models

the relation between requirements and their underlying assumptions and measures the

risk associated with failure of the assumptions using Boolean networks and stochastic

modeling. The sixth paper models the risk associated with injection of requirements late

in development cycle with the help of stochastic processes.

Keywords

software engineering, risk, execution trace, entropy, defect rediscovery, extreme value

theory, Kappa distribution, G/M/k queue, binary integer programming, customer

profiling, escalated requirement, assumption, stochastic modeling, Boolean network

 v

Co-Authorship Statement

The following thesis contains material based on a previously published manuscripts co-

authored with multiple colleagues. Andriy Miranskyy is the principal author of all

material in this thesis. The details of the contribution of each author are given below. The

names of authors are listed in alphabetical order per contribution type. Figures in brackets

represent chapter numbers.

Matt Davison (2, 3, 4, 6), Nazim Madhavji (2, 6, 7), and Mark Reesor (3, 4, 6) facilitated

modeling and interpretation of results. Mechelle Gittens (2) and Colin Taylor (2)

collected data for the case study and helped validate practicality of the designed

technique. Enzo Cialini (5), David Godwin (2, 5), and Mark Wilding (2) provided

valuable feedback in validating the resulting models. Shariyar Murtaza (3) gathered data

for the validation case study. Remo Ferrari (7), Shereen Ghobrial (7), Christine Giaraffa

(7), and Quazi Rahman (7) contributed to analysis of the model’s application.

 vi

Acknowledgments

It is a great pleasure to acknowledge the help and support that was given to me by my

friends and colleagues.

First and foremost I would like to thank my supervisors and advisor Matt Davison,

Nazim Madhavji, and Mark Reesor. I am sincerely thankful for all your time and energy

that you have invested in me. Your assistance, remarkable expertise, and confidence in

my abilities shaped me as a scientist.

I am extremely grateful to my coauthors and colleagues Enzo Cialini, Remo Ferrari,

Shereen Ghobrial, Christine Giaraffa, Mechelle Gittens, David Godwin, Shariyar

Murtaza, Quazi Rahman, Colin Taylor, and Mark Wilding for their contribution to papers

and projects documented in this dissertation.

This research has been partially funded by the IBM Center for Advanced Studies. I am

truly thankful to the outstanding staff of the Center for the help and support that they

provided me over the years.

I would like to thank the entire Financial Mathematics and Software Engineering groups.

Our friendly debates on seminars made priceless contributions to this thesis.

I would also like to show my appreciation to the administrative support provided by the

magnificent staff of the Applied Mathematics department in particular and the University

of Western Ontario for their constant assistants and support.

 Of course, I would not be here without my family and friends; I owe my deepest

gratitude to you.

 vii

Dictionary and Abbreviations

• BIP = Binary Integer Programming method.

• Fat tailed (heavy-tailed) distribution is a probability distribution having

kurtosis > 3. A fat tailed random variable takes on extreme values more often than

a normal distribution with the same mean and variance.

• G/M/k is a queue in which the inter-arrival time of requests are independent and

identically distributed (iid) random variables from a general distribution, G, the

service times are iid exponential random variables and k servers operate

independently.

• M/M/k is a queue in which the inter-arrival time of requests are iid random

variables from an exponential distribution, the service times are iid exponential

random variables and k servers operate independently.

• Program execution trace is a sequential log of pertinent information captured

during any particular run of software.

• Software defect is a fault in a computer program that produces an unexpected

result or causes the program to behave in an unintended manner.

 viii

Table of Contents

CERTIFICATE OF EXAMINATION ... ii

Co-Authorship Statement.. v

Acknowledgments.. vi

Dictionary and Abbreviations ... vii

Table of Contents...viii

List of Tables ... xiii

List of Figures ... xv

Chapter 1... 1

1 Introduction.. 1

1.1 Outline... 5

References .. 8

Chapter 2... 10

2 SIFT: A Scalable Iterative-Unfolding Technique for Filtering Execution Traces....... 10

2.1 Introduction... 10

2.2 Related Work .. 14

2.3 Method Description .. 17

2.3.1 The Iterative-Unfolding Approach ... 17

2.3.2 Algorithms .. 18

2.4 Analysis... 28

2.4.1 Efficiency.. 28

2.4.2 Method Accuracy.. 32

2.4.3 Iteration-unfolding overheads... 33

 ix

2.5 Implementation ... 34

2.6 Validation Case Study... 35

2.7 Conclusion And Future Work... 42

References .. 43

Chapter 3... 46

3 Using Entropy Measures for Comparison of Software Traces 46

3.1 Introduction... 46

3.2 Entropies and Traces: definitions.. 50

3.2.1 Extraction of probability of events from traces .. 50

3.2.2 Entropies and traces .. 51

3.3 Usage of entropies for classification of traces .. 52

3.3.1 Measure of distance between a pair of traces ... 54

3.3.2 Trace-ranking algorithm ... 55

3.3.3 Traces ranking algorithm: efficiency .. 57

3.3.4 Entropies as fingerprints: drawback.. 58

3.4 Validation case study .. 58

3.4.1 Analysis of individual entropies ... 61

3.4.2 Analysis of the complete set of entropies ... 68

3.5 Summary ... 69

References .. 70

3.6 Appendix: Approximation of Equation (3.8).. 72

Chapter 4... 74

4 Metrics of Risk Associated with Defects Rediscovery .. 74

4.1 Introduction... 74

 x

4.2 Related Research... 76

4.3 Metrics of Risk.. 77

4.3.1 Metrics Application .. 77

4.3.2 Formulation of Metrics ... 80

4.4 Case Study .. 86

4.4.1 Finding a Suitable Distribution... 89

4.4.2 Application of the Metrics .. 95

4.4.3 Threats to Validity .. 102

4.5 Conclusions... 103

References .. 103

Chapter 5... 105

5 Selection of Customers for Operational and Usage Profiling.................................... 105

5.1 Introduction... 105

5.2 Related Work .. 108

5.3 Qualitative Analysis Of Customers .. 108

5.4 CUSTOMER SELECTION TECHNIQUE .. 110

5.4.1 Minimization of Customer Set.. 110

5.4.2 Prioritization of Customers within the Minimal Set 113

5.5 Validation Case Study... 114

5.5.1 Exploratory Analysis .. 114

5.5.2 Selection of the Minimal Set of Customers .. 115

5.6 Summary ... 118

References .. 118

Chapter 6... 120

 xi

6 Modelling Assumptions and Requirements in the Context of Project Risk 120

6.1 Introduction... 120

6.2 Related work ... 123

6.3 Requirements & Assumptions .. 125

6.3.1 Assumptions Formalization .. 125

6.3.2 Requirements Formalization... 127

6.3.3 Requirements & Assumptions Interaction .. 128

6.4 Modelling tools ... 129

6.4.1 Boolean network ... 130

6.4.2 Modelling Event Arrival ... 131

6.5 Predicting risk at time t ... 135

6.5.1 Risk metrics .. 135

6.5.2 Single-run Algorithm: System State at Final Time................................. 137

6.5.3 Multiple-runs Algorithm: System State at Final Time 139

6.6 Simulation Example.. 140

6.7 Conclusions & Future Work ... 146

References .. 146

Chapter 7... 149

7 Managing the Escalation of Requirements .. 149

7.1 Introduction... 149

7.2 Modeling the Escalation of Requirements.. 151

7.2.1 Modeling the Escalation of Known Requirements 152

7.3 Conclusions and Future Work .. 160

References .. 160

 xii

Chapter 8... 161

8 Conclusions and Future Work.. 161

References .. 163

Curriculum Vitae .. 165

 xiii

List of Tables

Table 1. Papers: summary information... 6

Table 2. Applicability of the papers to software development phases (X marks applicable

area)... 6

Table 3. Descriptive statistics of traces... 36

Table 4. Dictionaries of a trace given in Figure 11... 51

Table 5. Example: Relation between traces and defects... 56

Table 6. Example: Traces sorted by distance and ranked... 57

Table 7. Example: Top 1-4 defects ... 57

Table 8. Descriptive statistics of length of traces ... 60

Table 9. Fraction of correctly classified traces in Top X for 1) [](; ,);EH t l c qα with

(, ,)E L R T∈ , 5 4(10 ,10)q − −∈ , = 3l , and =c FDT , and 2) set of entropies Λ ; based on

10-fold cross validation. Average fraction of correctly classified traces in 10 folds is

denoted by “Avg.”; plus-minus 95% confidence interval denoted by “95% CI”. 65

Table 10. Percent of correctly classified traces in Top X for [](; ,);EH t l c qα , =E L ,

= 3l , and 4 5= {10 ,10 }q − − .. 67

Table 11. AIC.. 90

Table 12. Values of variables.. 93

Table 13. Results of the G/M/k model for v.4, second year. .. 102

Table 14. Customer prioritization criteria... 110

 xiv

Table 15: Example. Defects’ discovery .. 113

Table 16. Percentage of the total number of customers needed to cover X% of defects

discovered at least Y times .. 117

Table 17. Example 4.1. State changes of assumptions. .. 132

Table 18. Assumptions properties... 142

Table 19. Requirements properties ... 142

Table 20. Metrics values at = 1fT (± denotes standard deviation) 145

Table 21. Setup parameters... 155

Table 22. Expected escalation time .. 157

 xv

List of Figures

Figure 1. An example of a trace.. 11

Figure 2. Algorithm for comparing two processes ... 21

Figure 3. Comparison of two uncompressed processes. Upper dashes depict functionality

present only in Process 1; lower dashes – functionality present only in Process 2; no

dashes – common functionality. ... 22

Figure 4. Algorithm for measuring distance between traces. ... 25

Figure 5. Algorithm for comparing a single trace t against a set of traces S. 27

Figure 6. Algorithm for comparing traces within a given set S. 31

Figure 7. Timing of comparing a trace against a set of traces; timing for each draw is

denoted by circles; values are plotted on the left axis. Solid line shows the number of

comparisons in the lower pattern; dotted line in the upper pattern; values of both lines are

plotted on the right vertical axis.. 38

Figure 8. Timing of comparing traces within a given set ... 39

Figure 9. Number of traces remaining after each iteration of comparing traces within a

given set .. 39

Figure 10. Predicted time (dotted lines represent 95% confidence bands) for (a) P1(t,S) −

linear, and (b) P2(S) − quadratic, based on extrapolation of the fitted regression. 41

Figure 11. An example of a trace.. 46

Figure 12. Distribution of the number of traces per defect (version) 60

Figure 13. Dictionary size for various values of l and c ... 61

 xvi

Figure 14. Interpolated average fractions of correctly classified traces in Top 5 (based on

10-fold cross validation) for =E L and =c FDT . for different values of l and q 63

Figure 15. Fraction of correctly classified traces in Top 5 for =E L , = 3l , 5= 10q − , and

=c FDT . Solid line shows the average fraction of correctly classified traces in 10 folds;

dotted line shows pointwise 95% confidence interval (95% CI) of the average. 64

Figure 16. Average fraction of correctly classified traces in Top 5 for various values of l ;

=E L , 5 0 2(0,10 ,10 ,10)q −∈ , =c FDT .. 66

Figure 17. Average fraction of correctly classified traces in Top 5 for various values of

q ; =E L , (1,3,7)l ∈ , = c FDT .. 68

Figure 18. N(t): total number of defects discovered up to time t. 87

Figure 19. R(0,t): total number of rediscoveries up to time t.. 88

Figure 20. L-moments ratio diagram of Di for all releases per year (years 1 – 5). The

hollow circles denote each of the yearly datasets of Di. The diagram shows the fits of the

following distributions: Exponential (EXP), Normal (NOR), Gamma (GUM), Rayleigh

(RAY), Uniform (UNI), Generalized Extreme Value (GEV), Generalized Logistic

(GLO), Generalized Normal (GNO), Generalized Pareto (GPA), generalization of the

Power Law, Pearson Type III (PE3), and Kappa (KAP). Kappa distribution applicability

space is a plane bounded by GLO distribution line above and the “Theoretical limits” line

below and is not shown on the legend. Based on this figure, Kappa distirbution is the only

one that is applicable to modeling each of the datasets. ... 90

Figure 21. QQ plot of the empirical vs. PE3 distributions’ quantiles............................... 91

Figure 22. QQ plot of the empirical vs. KAP distributions’ quantiles. 91

Figure 23. QQ plot of the empirical vs. Compound distributions’ quantiles.................... 94

 xvii

Figure 24. Plot of the empirical cdf vs. Compound Kappa distribution theoretic cdf. 95

Figure 25. M1: expected number of defects rediscovered more than d times during the 2nd

year after GA date... 96

Figure 26. M3: expected total number of rediscoveries for defects with number of

rediscoveries above d during the 2nd year after GA date. ... 98

Figure 27. M5: probability that the total number of rediscoveries will not exceed L during

the 2nd year after GA date. .. 99

Figure 28. Estimate that the total number of rediscoveries will not exceed M6 with

confidence level α... 100

Figure 29. Density of requests inter-arrival times for v.4, second year.......................... 101

Figure 30. Total number of discovered defects vs. average number of rediscoveries per

customer. Dotted lines depict borders of quadrants described in Table 14. 115

Figure 31. Percentage of the total number of customers needed to cover a certain

percentage of defects of interest. .. 116

Figure 32. Percentage of the total number of customers needed to cover a certain

percentage of defects of interest (log-scale). .. 117

Figure 33. Example 4.1. Set up of assumptions for a. Configuration I; b. Configuration II.

Solid arrows denote standard relationship, dotted arrows denote key relationship. 131

Figure 34. Example 4.2. Five random realizations of (,)I r t ... 134

Figure 35. Simulation setup. Circles denote assumptions, squares denote requirements.

Solid arrows denote standard relationship, dotted arrows denote key relationship. 141

Figure 36. The value of ˆ(,)V t⋅ .. 143

 xviii

Figure 37. The value of ˆ (,)C t⋅ .. 144

Figure 38. The value of ˆ (,)U t⋅ .. 144

Figure 39. The value of ˆ(,)I t⋅ ... 145

Figure 40. Dependencies among requirements... 155

Figure 41. Case 1. Expected priority .. 156

Figure 42. Case 2. Expected priority .. 157

Figure 43. Case 3. Expected priority .. 158

1

Chapter 1

1 Introduction
In this section, we give a brief exposition to the field of software engineering and the

challenges faced in the field. The term “Software Engineering”, and the engineering

subfield it describes, was coined in 1968 at the NATO Software Engineering Conference

[1]. The IEEE Computer Society Software Engineering Body of Knowledge defines

software engineering as:

“(1) The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of

engineering to software. (2) The study of approaches as in (1)” [2].

This discipline was created to address the “software crisis” increasingly apparent [1], [3]

at the time. This crisis described the difficulty of writing correct and maintainable

programs as computational power and the concomitant complexity of problems that can

be tackled increased. The crisis manifested itself both in: (i) unmanageable projects

running over budget and late1 and (ii) low quality, inefficient software not meeting

original requirements. In some cases projects failed completely, being unable to deliver a

final product. In order to tackle these issues, well defined and structured approaches had

to be developed.

The complexity problem and the need for defined processes can be described using

analogies from building construction. While most people can hammer a nail into a wood

board, a much smaller fraction of the population (your humble author excluded) is

capable of building a doghouse with an even smaller number of people being capable of

building a wooden cabin. Increase in the size and complexity of a project demands not

1 Based on industrial surveys and statistical data, even in the modern era, the average project is 6 to 12
month behind schedule and 50 to 100 percent over budget [4].

2

only increased craft skills but also the ability to plan, design, build and test the final

product.

Similar to other engineering disciplines, software engineering is divided into a number of

knowledge areas [2], [5]. We now describe a few such areas relevant to this thesis. The

first four areas can be mapped to specific development phases:

1. Software requirements: deals with elicitation, analysis, specification, and

validation of requirements for a given software project.

2. Software design: generates high-level designs (also called architecture) depicting

the components and their interfaces, based on specifications elicited during the

software requirements phase. Once the high-level design is complete, low-level

design of specific components can be created.

3. Software construction: relates to the actual implementation (coding and unit

testing) of the product based on design specifications.

4. Software testing: verifies that the implementation satisfies the specifications and

is free of defects. Once the testing is complete, the product is deployed in the

field.

In practice, the development is done using an iterative and incremental approach [6]: an

organization will pass through multiple iterations of requirements, design, construction,

and testing between the initial planning and final deployment of the software product.

5. Software maintenance: provides support by answering questions and fixing

defects that have escaped the testing team and were identified by customers in the

field (after product delivery). In addition, software maintenance may also deal

with changes to product functionality (also called software evolution) satisfying

additional customer requirements arising during product exploitation use.

3

The previous five knowledge areas map to specific phases of software development. The

remaining two are more general.

6. Software engineering management: relates to project management (and

measurement) of software engineering.

7. Software quality control: corresponds to the qualities of the intended system

(e.g., reliability of the system, performance, usability, interoperability,

portability, maintainability, and others). This area is tightly related to all of the

areas listed above.

A significant amount of work has been done improving the software development process

and integrating these changes into the industry. However, an analysis (based on literature

and empirical evidence) published in 2003 concludes:

“In a discussion of software engineering and society in 1968 [1], Kolence

suggests that ‘the basic problem is that certain classes of systems are placing

demands on us which are beyond our capabilities and our theories and methods of

design and production at this time.’ Empirical evidence of software engineering

projects suggests this crucial issue remains valid 35 years after it was stated. It

appears that as fast as software engineering makes progress, so the demands made

on it continue to increase beyond its capabilities” [7].

What is the current state of the process maturity in the industry? An approach for process

improvement, called Capability Maturity Model Integration (CMMI) [8], was developed

by the Software Engineering Institute of Carnegie Mellon University (SEI). The CMMI

helps “integrate traditionally separate organizational functions, set process improvement

goals and priorities, provide guidance for quality processes, and provide a point of

reference for appraising current processes.” [8] The CMMI defines five levels of process

maturity [8]: from the lowest (CMMI-1) corresponding to chaotic, poorly controlled, and

reactive processes; to the highest (CMMI-5) corresponding to proactive, well defined

processes with focus on constant improvement.

4

The SEI conducts regular surveys to determine the maturity distribution of processes in

the industry. Based on the survey of process maturity profiles [9] the number of

organizations with chaotic processes or defined reactive processes (CMMI -1 and -2)

went down from ≈35% in 2002 to ≈28% in 2010. The number of organizations with

proactive processes (CMMI-3) went up from ≈33% in 2002 to ≈55% in 2010. However,

the number of organizations with highest levels of process maturity (CMMI -4 and -5)

focusing on well established, measured and controlled processes and with continuous

process improvement went down from ≈23% to ≈10%.

Why is the chaos in Software Engineering higher than in other engineering disciplines

[10]? Why is the fraction of organizations with highest process maturity decreasing [9]?

Increasing complexity is one of the major contributing factors to the problem [7].

However, there exist additional economic and legal reasons.

The problem is two-fold:

1. Many of the techniques created to improve software processes are non-scalable

[11] – as projects get larger time and resource constraints force some processes2

to be sacrificed at least part of the time.

2. Even if a technique is applicable to a given project, it may not be enforced by the

organization due to corporate culture [10]: employees’ performance evaluation

may not take into account the use of proper processes.

Potential solutions to this problem are complicated by the fact that the majority of

software products (unlike products created using other engineering disciplines) include

“as-is” clauses in their licenses stating that a given software vendor does not provide any

warranty and shall not be deemed liable for any damage caused by its software products.

2 An example of such process is software inspection (structured peer-reviewed process aimed at finding
defects in development documents, such as programming code and design) [12].

5

This can lead to the situation where the final quality of the product is considered non-

critical by some developers. This decreases the economic incentive for software

developers to properly engineer solutions.

How should the situation be improved? The first aspect of the problem can be solved by

developing fast and scalable solutions supported by proper empirical studies [13], [14].

The second aspect does not have a straightforward solution: it is extremely difficult to

change corporate culture [15]. In order to address this issue, newly developed techniques

and processes should be capable of being integrated into existing processes without

draining significant resources. Namely, they should satisfy the following requirements: a)

be easy to implement and b) be easy to automate. Once implemented, a process should

run automatically and deliver regular reports in a comprehensible format.

This thesis describes a set of models, techniques, and metrics (satisfying the above

mentioned requirements) that can help in the analysis of computer software during

various phases of software development.

1.1 Outline
Many problems in the Software Engineering domain are similar, from the mathematical

perspective, to problems in other disciplines, such as Financial Engineering. Therefore,

similar tools may be applied to Software Engineering and Financial Engineering

problems. One example is the usage of stochastic tools for modeling stock prices and

requirement attributes. Another example is the usage of Extreme Value Theory for

modeling the probability of rare events, such as high magnitude earthquakes and software

defects with a high number of rediscoveries. The thesis consists of six papers (one paper

per chapter) that use mathematical tools (from the domains summarized in Table 1) to

develop a set of techniques to assess and mitigate risks associated with particular phases

of software development (given in Table 2).

6

Table 1. Papers: summary information
Chapter

Topic Publication type Tools Reusing tools from

2 Technique for selection of
software traces

Conference
proceedings (best
student paper)

Heuristics Algorithms

3 Technique for selection of
software traces using
entropies

Submitted to
Information
Sciences

Entropies Information Theory

4 Metrics quantifying risk
associated with defect
rediscovery

Manuscript Extreme value
theory, heavy-tailed
distributions

Risk Management
and Operational
Research

5 Model for selection of a
minimal set of customers
for profiling

Workshop
proceedings

Binary integer
programming

Operational
Research

6 Model of relations
between requirements and
underlying assumptions

Conference
proceedings (short
version)

Stochastic models,
Boolean Networks

Stochastic Modeling

7 Models for managing
injection of requirements
late in development cycle

Workshop
proceedings

Stochastic models Stochastic Modeling

Table 2. Applicability of the papers to software development phases (X marks

applicable area)
Development Phases Overall product

quality
Project

management
Chapter

Requir-
ements

Archi-
tecture

Coding Testing Mainte-
nance

2 X X
3 X X
4 X X X
5 X X X
6 X
7 X

The first and second papers address issues arising in the testing and maintenance phases

of software development. The analysis of execution paths (also known as software traces)

collected from a given software product can help in software testing and software

maintenance. Unfortunately, techniques operating on traces containing full execution

details are resource-intensive. In the first paper, given in Chapter 2, we propose a

“fingerprint”-based iterative-unfolding technique for prompt selection of a subset of

traces relevant to a given task. Once the subset is selected, it can be passed to external

tools for further analysis. In Chapter 3, we study the applicability of extended entropies in

7

the role of fingerprints. The techniques in these two papers can accelerate problem

determination of defects discovered by customers, leading to improved organizational

response (thus increasing customer satisfaction) and to easing of resource constraints.

The third and fourth papers, presented in Chapters 4 and 5, help in addressing issues

related to software maintenance and overall quality. Techniques presented in these papers

also help project managers in resource allocation.

The third paper analyzes rediscovery of defects by customers and establishes a set of

metrics (based on risk management and operational research apparatus) needed to

quantify the risks associated with defect rediscovery. The metrics are designed to help:

the QA team to assess their processes, the support and maintenance teams to allocate

their resources, and the customers to assess the risk associated with the use of the

software product.

Collecting information about product usage by customers (operation profiling) helps

testers to build realistic workloads, covering functionality executed by customers, hence

reducing risks associated with inadequate product quality. However, it is impossible to

gather such information from all customers due to resource and legal constraints. The

fourth paper establishes a relation between defects encountered by customers and their

operational profiles. We then build a model for selecting a minimal set of customers that

should be profiled to gather information about users’ behaviour.

The fifth and sixth papers deal with problems from the domain of requirements

engineering.

Each requirement collected during requirements elicitation has an underlying assumption.

However, incorrect assumptions can lead to software problems. In order to quantify the

risks associated with such problems a stochastic model of relations between requirements

and underlying assumptions is established in the fifth paper (Chapter 6).

8

The sixth paper, presented in Chapter 7, defines stochastic models for managing risk

associated with requirements injected late in the software development cycle (we call this

event escalation). The models can help in predicting escalations of the existing

requirements and in allocating resources to handle the arrival of unknown requirements.

Finally, Chapter 8 concludes the thesis.

References
[1] P. Naur and B. Randell, “Software Engineering: Report of a conference sponsored

by the NATO Science Committee Garmisch Germany 7th-11th October 1968,”
Scientific Affairs Division, NATO, 01-Jan-1969.

[2] A. Abran, P. Bourque, R. Dupuis, J. Moore, and L. Tripp, Guide to the Software
Engineering Body of Knowledge - SWEBOK. IEEE Press, 2004.

[3] E. W. Dijkstra, “The humble programmer,” Commun. ACM, vol. 15, pp. 859–866,
Oct. 1972.

[4] E. Yourdon, Death March, 2nd ed. Prentice Hall, 2004.

[5] “Industry implementation of International Standard ISO/IEC 12207: 1995.
(ISO/IEC 12207) standard for information technology - software life cycle
processes - life cycle data,” IEEE/EIA 12207.1-1997, 1998.

[6] C. Larman and V. R. Basili, “Iterative and incremental developments. a brief
history,” Computer, vol. 36, no. 6, pp. 47 - 56, Jun. 2003.

[7] C. L. Simons, I. C. Parmee, and P. D. Coward, “35 years on: to what extent has
software engineering design achieved its goals?,” Software, IEE Proceedings -,
vol. 150, no. 6, pp. 337 - 350, Dec. 2003.

[8] CMMI Product Team, CMMI for Development, Version 1.3; CMU/SEI-2010-TR-
033. Software Engineering Institute of Carnegie Mellon University, 2010.

[9] CMMI Appraisal Program Team, “Process Maturity Profile. CMMI For
Development SCAMPI Class A Appraisal Results 2010 Mid-Year Update,” Sep-
2010.

[10] D. L. Parnas, “Risks of undisciplined development,” Commun. ACM, vol. 53, pp.
25–27, Oct. 2010.

[11] A. V. Miranskyy et al., “SIFT: a scalable iterative-unfolding technique for
filtering execution traces,” in Proceedings of the 2008 conference of the center for
advanced studies on collaborative research: meeting of minds, pp. 274-288, 2008.

[12] M. Fagan, “Advances in Software Inspections,” IEEE Transactions on Software
Engineering, vol. 12, no. 7, pp. 744-751, 1986.

9

[13] E. J. Weyuker, “Software engineering research: from cradle to grave,” in
Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on the foundations of software
engineering, pp. 305–311, 2007.

[14] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical Softw. Engg., vol. 14, pp. 131–164,
Apr. 2009.

[15] J. P. Kotter and J. L. Heskett, Corporate Culture and Performance. Free Press,
1992.

10

Chapter 2

2 SIFT: A Scalable Iterative-Unfolding Technique for
Filtering Execution Traces

Comparing program execution traces can be useful for numerous purposes, such as

software testing, system security analysis, program comprehension, software evolution

and other areas of software development. Unfortunately, trace comparison techniques that

operate on execution traces containing full execution details are too slow for use in large-

scale production system environments. In order to speed up the comparisons, we propose

a technique (called SIFT) for "filtering-out" irrelevant traces from a given set so that only

the relevant few residual traces are then used for comparison. Our solution involves

multiple levels of trace compression, each with a different degree of abstraction. These

traces are compared iteratively while filtering out dissimilar traces. This chapter describes

the compression and comparison algorithms. Prototype results from a significant case

study show that the SIFT approach is efficient and scalable for use in an industrial

software development environment.

2.1 Introduction
The comparison of program execution traces (see an example trace in Figure 1) is

important for a number of problem areas in software development and use. In the area of

testing, for example, it can be used to: (1) determine how well user execution paths

(traces collected in the field) are covered in testing [4, 7, 25]; (2) detect anomalous

behaviour arising during a component’s upgrade or reuse [21]; (3) map and classify

defects [13, 27, 31]; (4) determine redundant test cases executed by one or more test

teams [30]; and to (5) prioritize test cases (to maximize execution path coverage with a

minimum number of test cases) [8, 23]. Trace comparisons are also used in operational

profiling (for instance, mapping frequency of use of execution paths by different classes

of users.) [25] and intrusion analysis (e.g., deviations of field execution paths from

expectations) [17].

11

For some problems, such as test case prioritization, traces gathered in a condensed form

(such as a vector of executed function names or caller-callee pairs) are adequate [8].

However, for others, such as the detection of missing coverage and anomalous behaviour

using state machines, detailed execution paths are necessary [4, 21]. Also, in some

situations, the time required for analysing traces can be extremely important, for example

when a customer support analyst is using traces to map a reported defect onto an existing

set of defects, or when a development analyst is working with the testing team to identify

missing coverage that resulted in a field defect.

In general, a trace can be thought of as a sequential log of pertinent information

captured during any particular execution-run of software. This trace shows program flow

entering functions3 f1, f2, and f3, and eventually exiting these functions and, while in

function f3, it reached specific data points (probe 1 and probe 2), which were manually

set by the developer as points of interest.

Figure 1. An example of a trace

Research Problem and Practical Motivation: Unfortunately, comparison techniques that

use full execution paths (i.e., do not use some abstracted versions of the paths) lack

speed, which can become critical when using numerous large execution traces. For

3 In this case a function is equivalent to a subroutine.

process_id = 133 thread_id = 15 node = 0
1 f1 entry
2 | f2 entry
3 | | f3 entry
4 | | f3 data [probe 1]
5 | | f3 data [probe 2]
6 | | f3 exit
7 | f2 exit
8 f1 exit

12

example, the kTail-based algorithms4 applied to traces from a reference system, called

Object Flattener, (for the purpose of creating finite state automata – which would involve

comparing given traces) did not terminate after 24 hours of execution [4]. While the

kBehavior algorithm [4] accomplished this task in “minutes”, their paper does not

mention the size or the number of traces involved in Object Flattener. Subsequently, we

applied kBehavior prototype tool [15] on traces from our environment. With only 2 traces

totalling 426 elements (the smallest in our set of traces), the tool took 9 minutes; with 36

traces totalling 8625 elements (considered small in our environment), it did not terminate

after 36 hours. Finally, various permutations of up to 57 traces and up to 68,705 elements

consistently caused the kBehavior prototype to crash. These experiences highlight the

need for speed and robustness of the solutions.

In our development environment, we are faced with a distributed, multi-process, and

multi-threaded system of over 10 million lines of uncommented source code developed

over 15 years, with over 100 thousand traces (many with millions of elements per trace)

from the testing phase. There are hundreds of thousands of installations worldwide of the

system, in different configurations. As a result, a critical issue surfaced as to how quickly

the testing organization could identify those test cases that match the traces collected

from the field upon recognition of a defect or a problem such as a logic error. While there

are many different approaches to performing trace comparisons, they are not considered

workable, as described earlier, for the large and complex system we are dealing with. The

described need to match field traces with test cases quickly, together with a lack of

reliable and scalable tools for doing this, motivated us to investigate alternate solutions.

Solution Approach: To speed up comparison of traces, we propose that traces first be

filtered out from the given set, rejecting those that are not going to match with the test

cases and then only the remaining few be compared for target purposes. The underlying

4 The algorithms generate Finite State Automata models.

13

assumption is that most traces in a given set will not be the same; few will be similar, and

even fewer will be identical. We validated this assumption in our sample set of traces by

manual inspection of the dataset. Thus, filtering out irrelevant traces is a key to speeding

up the comparison process.

This strategy is implemented in our solution called the Scalable Iterative-unFolding

Technique (SIFT). Basically, the collected traces are first compressed into several levels

prior to comparing them. Each level of compression uses a unique signature, which we

call a “fingerprint”5. Then, starting with the highest level of compression the traces are

compared, and unmatched ones rejected, while iterating through the lower levels until the

comparison process is complete, leaving only traces that match at the lowest (or

uncompressed) level. The SIFT objective ends here. The matched traces can then be

passed on to external tools for further analysis such as code coverage, security breaches,

and operational profiling.

Case study: The prototype results from a case study we conducted show that the approach

is scalable for use in large-scale software system development environments. That is, in

no more than four iterations (depending on the context of the specific problem being

solved), dissimilar traces are rejected, leaving only the residual similar traces. The case

study was conducted on 1416 multithreaded test case traces collected from the system

under study (SUS), with an average length of 1.93×106 elements (maximum 1.55×108

elements) per trace. The first test was comparing a trace against a set of 1,000 traces (e.g.,

useful for coverage analysis); the average time was 4 seconds. The second test was

“within-set” filtering and clustering (e.g., useful for periodic profiling of usage similarity

among a class of users or a class of test cases); the average of comparing multiple times

within a set of 1,000 traces was only 44 minutes.

5 The fingerprint of the next iteration always contains more information than the fingerprint of the previous
iteration, hence the term unfolding.

14

Based on the extrapolation of the timing data obtained from the case study, it should take

39 seconds on average to filter out 10,000 different traces, leaving, as a residue, a few

uncompressed traces that are within the user-defined threshold of similarity. Similarly,

filtering (and clustering) within a set of 10,000 traces should take 2.6 days on average.

We consider the “within-set” performance as quite reasonable, and encouraging, given

that such profiling would occur only periodically in a product’s life. Considering the lack

of readily available solutions for use in industrial-scale environments, the proposed

approach is both elegant and effective.

The rest of the paper is structured as follows: Section 2.2 reviews related literature.

Section 2.3 details the SIFT and associated algorithms. Section 2.4 analyses the

efficiency and accuracy of the SIFT. Section 2.5 describes an implementation and use of

the proposed approach. Section 2.6 describes the case study. Finally, Section 2.7 gives

conclusions and describes future work.

2.2 Related Work
A variety of different approaches (such as, automata, signals, call-graphs, compression

without information loss, and clustering) exist in dealing with execution traces for

various target purposes such as finite automata representation, visualization, test-case

prioritisation, and failure classification. These are overviewed below.

Finite State Automata representation: There is a family of kTail-based algorithms that

can be used to find differences in execution path coverage between traces [2, 3, 20, 28].

These algorithms generate Finite State Automata (FSA) interaction models by combining

traces into prefix tree automaton. Observed behaviour is generalized by merging states

that cannot be distinguished from the outgoing paths of length k (merge shared k-future

states). The original kTail algorithm was proposed by Biermann and Feldman [2]. Cook

and Wolf [3] introduce an additional reduction step to the kTail approach. Reis and

Renieris’ [28] algorithm reduces the FSA if two states share at least one k-feature.

Finally, Mariani and Pezze [20] introduced the kInclusion extension to kTail (two states

15

are merged if a k-feature of the first state is included in the k-feature of the second state).

All of the algorithms above need to process all traces first before generation of the

interaction model can begin. Mariani and Pezze [21] developed an algorithm, called

kBehavior, that overcomes this issue and works incrementally. These techniques may be

used to determine how well user execution paths (traces collected in the field) are

covered in testing [4], detecting anomalous behaviour arising during a component’s

upgrade or reuse [21], and general program comprehension [28].

Signal representation: Kuhn and Greevy [16] visualize multiple execution traces in signal

form, discarding information about function names. Once conversion to signal form is

complete, a Dynamic Time Warping (DTW) pattern recognition technique is used to find

similar patterns between traces. This approach is used to compare detailed execution

traces for program comprehension. Unfortunately, patterns of execution paths containing

different function calls may have similar shapes. This is especially true for large software

systems consisting of multiple processes. Therefore, it is important to group (pre-filter)

the traces containing similar execution paths, before conversion to the signal form. Once

pre-filtering is complete, an analyst can apply the DTW technique to each of the groups

separately.

Call graph representation: Another approach patented by Avvari et al. [1] is the idea of

creating and analysing call graphs. Execution paths (EP) are first converted into call

graphs and then compared in graph form. In practice, the quantity and complexity of EP

in a large software system would not allow one to perform this comparison directly in a

feasible amount of time. For example, for a large software system, the number of test

cases can be of order of 105, with the number of records per EP of the order of 106. The

performance of the publicized algorithms is, at best, of () ()2log / / logV E V E V⎡ ⎤
⎢ ⎥⎣ ⎦

O , where V is

the number of vertices and E is the number of edges in a given EP call graph (see [9, 10]

for details).

16

Lossless compression techniques: With these techniques, it is possible to reconstruct the

exact original data from the compressed data. Renieries et al. [29] introduce lossless

compression techniques for source-code-level traces that lead to significant compression

of the original traces. Techniques, such as that designed by Hamou-Lhadj and Lethbridge

[12] can be used for visualizing traces in a compact form, which can be useful for

viewing several traces on a display screen during software maintenance.

Lossy compression techniques: With these techniques, reconstruction of the exact original

data from the compressed data is not possible. There are both short and long execution

sequences, used for various purposes. In the realm of short sequences, for example,

Elbaum et al. [8] found that function-name-level execution traces can be useful for test

case prioritization. Rothermel et al. [30] and Masri [22] used the same type of traces to

perform test suite reduction/minimization by identifying redundant traces. Greevy et al.

[11] explore relations between features (function names) extracted from traces and

software entities for software evolution analysis. Yuan et al. [31] found that for system

call defects, caller-callee-pairs-level execution traces (with parameter information) were

effective for mapping a new problem to an existing one. In the realm of long sequences,

for example, Miranskyy et al. [23] show that sequences of length 3 or more are

potentially important for test case prioritization. Elbaum et al. [7] found that sequences of

length 5 are useful for fault detection. Dalmeier et al. [5] studied sequences of various

lengths (no more than 8) to localize defects. Lee et al. [17] found execution sequences of

length 7 and 11 to be useful for intrusion detection.

Trace clustering techniques: In addition, researchers have created techniques to compare

other types of information. For example, a number of studies exist on clustering

execution profiles collected from software users. These profiles are not focused on

execution traces and can include additional information about a particular software

system, such as covered code-blocks, heap size, CPU load, etc. For example, Podgursky

et al. [27] and Haran et al. [13] use various techniques to cluster such profiles. These

clusters can be used to classify a software system’s failures. However, they do not

17

address the challenge of comparing detailed uncompressed traces so the need to filter the

traces remains.

While there are many techniques, as described above, researchers have not considered the

idea of filtering-out traces to improve comparison of uncompressed traces. This is the

bounded scope that is addressed by our work described in the next section.

2.3 Method Description
In this section, we first describe the basics of the SIFT approach in Section 2.3.1. As

overviewed in the introduction section, this approach filters out traces from a given set

that are not going to match with the test cases, leaving a few for detailed comparison.

Section 2.3.2 then describes the algorithms underlying this approach. The analysis of

these algorithms is carried out in Section 2.4.

2.3.1 The Iterative-Unfolding Approach

Further to the introductory description earlier, the idea behind the SIFT approach is two-

fold.

Unfolding: First, traces to be compared can exist at different levels of compression. For

example, at the lowest level of compression, a trace would be at the level of detail

captured from program execution, where a sequence of function calls is represented as a

string of calls. A slightly higher level of compression could be, for example, where this

string of functions calls is broken down into “caller-callee” pairs. A yet higher level of

compression could be just a list of function names. The type of compression applied and

the number of compression levels is analyst defined and should be selected in such a way

that the current iteration compression technique retains less information than the next

iteration.

Also, applying compression leads to loss of information in the resultant compressed trace.

The type of information lost depends on the compression technique applied. Furthermore,

to obtain the various higher-level traces, different compression techniques are applied

18

directly to the program-level (or lowest-level) trace. Compression techniques and

compression levels are independent of each other. Note that any compression technique

can be used for trace compaction, as long as a certain measure of distance can be

calculated between a pair of compressed traces.

The full scope of the type of data involved in a trace can include a wide variety of

program elements such as: events, logic-based points in the program flow, store &

retrieve transaction points, and process enaction or termination points. We define a

process as an instance of a sequentially executed computer program.

Iterative: The second idea behind the SIFT approach is that it proceeds by comparing

stored traces at the highest level of compression and, based on the outcome of this

comparison (that is, a set of matched and unmatched traces), discards the unmatched set

of traces and proceeds to compare the matched set of traces at the next lower level of

compression until a terminating condition is satisfied. The terminating conditions are: (1)

the number of traces remaining for comparison is below a certain threshold; (2) no lower

levels of compression of traces exist; and (3) practical conditions such as exhausting time

and resources.

A benefit of this approach is that it makes comparison of large program traces or large

volumes of traces practical. Later, we discuss the various permutations of trace

comparison situations and how our approach fares with these.

2.3.2 Algorithms

It is important to understand the different situations where trace comparisons can be

useful, for example, how test cases relate to each other and to field execution of the

software system. In Section 2.3.2.1, we discuss various situations of interest for trace

filtering. Two core comparison algorithms are discussed in Section 2.3.2.2. Recall that

the comparisons proceed iteratively, from higher to lower levels of compression; the

algorithms are further described in Section 2.3.2.3.

19

There are several fundamental types of situations for comparing execution traces:

(a) A single trace t against a set of traces6 S. We can represent this comparison process

by a function P1 that takes as input two variables of interest, trace t and a set of traces S,

and outputs a subset of traces S1 closest7 to t:

P1(t, S) → S1.

One example of this situation is where the single trace is captured from the system’s use

in the field, hereafter called User Trace (UT); by contrast, the set represents the traces

captured from the execution of test cases, hereafter called House Traces (HT). This is

useful for identifying a subset of HTs that match the given UT for a purpose such as

coverage analysis, or for that matter, for identifying mismatches for the purpose of

proactively creating new test cases.

(b) Within a given set of traces S. Here, the comparison function P2 clusters S into L

subsets of similar traces:

P2(S) → {S1, S2, …, SL}.

One example of this situation is comparing a set of UTs against itself to profile subsets of

customers with similar system usage needs. The outputs of the comparison process are

subsets of similar and different traces.

In the next section, we describe how the comparison of two given traces is performed.

6 This approach can be further generalized to comparing two sets of traces, see [24] for further details.
7 See Section 4.3.2.1.2 for a complete discussion of our distance metric.

20

2.3.2.1 Core Algorithms: Fingerprints, Processes, and Traces

There are a number of algorithms that are used for the SIFT approach. For the sake of

clarity, we will first explain each algorithm and then continue with the description of the

overall approach.

First, as described in Section 2.1, there is the notion of a “fingerprint”. The fingerprinting

technique is described in Section 2.3.2.1.1. Also, we introduced the notion of a process in

Section 2.3.1. Traces contain information about multiple processes executed in parallel

(mostly independently). To align execution sequences pairwise comparison of processes

has to be implemented. The algorithm for comparing a pair of processes is described in

Section 2.3.2.1.2. We then describe the algorithm for comparing a pair of traces, building

upon process comparison, in Section 2.3.2.1.3. The overall approach binding fingerprints,

processes and traces is described in Section 2.3.2.1.4.

2.3.2.1.1 Fingerprints

A “fingerprint” of a process describes the uniqueness of the process in terms of the call

sequence, elements of contextual information, and other relevant information that make

up the fingerprint. The first technique for creating fingerprints would be the collection of

component names along with the frequency of occurrence contained in each process. On

average, the number of components per process is of order 101. In most cases, it should

not be bigger than 102. Similarly, information about function names can be collected.

In order to collect the next set of fingerprints we use a concept of l-words (also known as

N-grams [31]) to represent execution sequences. An l-word represents a continuous

substring of length l from a string. We then collect information about all possible entry,

exit, and probe points (defined manually by software developers at important places

inside the functions) and their frequency for each process (1-words) and end up with all

possible pairs of entry, exit, and probe points (2-words). For example, for the process

given in Figure 1, the set of all possible 1-words will be given by the set

{ }1 2
1 2 3 3 3 1 2 3, , , , , , , ,f f f f f f f f+ + + − − − where in k

jf the lower index j represents the function

21

name index and the upper index k represents the record type: + for an entry, − for an exit,

and number for a probe point k. 2-words will be represented accordingly by the set

{ }1 1 2 2
1 2 2 3 3 3 3 3 3 3 2 1 3 2, , , , , , .f f f f f f f f f f f f f f+ + + + + − − − − − All 1- and 2- words are unique in this

case – their frequencies are equal to 1.

Additional measures, such as Entropy measures [6] or N-stacks , can be introduced as

needed. If a user is interested in calculating exact matching between traces, then hashing

techniques can be used for compression. However, these techniques are not applicable for

approximate trace matching, since no non-trivial measure of distance can be established

between hashed traces.

2.3.2.1.2 Algorithm for Comparing a Pair of Processes

We summarize the algorithm for comparing a pair of processes at different levels of

compression in Figure 2. Functional forms of Mk(X,Y) are given below.

Suppose we compare fingerprints of two processes p1 and p2 at the level of

compression l. The distance between two processes is denoted by d.

Procedure compare_processes (p1, p2, l).

 If (level l fingerprint contains frequency info)

 d ← Ml(p1, p2);

 else if (level l fingerprint does not contain frequency info)

 d ← Ml
*(p1, p2);

 else if (level l represents uncompressed trace)

 d ← M•(p1, p2);

 return d;

Figure 2. Algorithm for comparing two processes

In order to measure the distance M•(X,Y) between two uncompressed processes X and Y,

processes are represented as strings; string comparison algorithms, such as diff [26] or

Pattern Hunter II [19], can be used to find similarities and differences. As a measure of

22

distance between two uncompressed traces we use the Levenshtein distance8 [18],

denoted by MU. An example of comparing two processes is given in Figure 3.

For comparing two compressed processes X and Y at the level of compression k (see

Section 2.3.2.2 for details), we use the following metric:

[(), ()], if

(,) ,
, if

X Y

ik

X i Y i X Y
M X Y

X Y

λ
∪⎧ ∩ ≠ ∅∑⎪= ⎨

⎪∞ ∩ = ∅⎩
 (2.1)

where ()
()

max , 1
(,) 1,

min , 1
α β

λ α β
α β

+
= −

+
and X(i) and Y(i) will return the value of the i-th

member in the set, e.g., frequency of occurrence, or zero if the member is absent. The

summation is performed for all elements of sets X and Y (X ∪ Y). We add 1 to both the

numerator and the denominator to avoid division by zero and subtract one from the ratio

to get 0 if X(i) = Y(i).

1
1 1 3 3 3 1

2
2 1 2 3 3 3 2 1

1 2
1 2 1 2 3 3 3 3 2 1

,

,

.

p f f f f f

p f f f f f f f

p p f f f f f f f f

+ + − −

+ + + − − −

−− −− −−
+ + + − − −

−−

=

=

↔ =

Figure 3. Comparison of two uncompressed processes. Upper dashes depict

functionality present only in Process 1; lower dashes – functionality present only in

Process 2; no dashes – common functionality.

Note that the usage of p-norms, e.g., Euclidean norm is not desirable; since they will not

highlight information about non-overlapping set members, while metric (2.1) will; see

Example 1 for details.

8 Levenshtein distance between two strings is given by the minimum number of operations (insertion,
deletion, and substitution) needed to transform one string into another.

23

Example 1.

Suppose we have two processes: A containing components a and b with frequencies 4 and

3 accordingly; B containing components a, b, and c with frequencies 5, 3 and 1; and C

containing components a, b, and c with frequencies 4, 3 and 2. We can write these

fingerprints as three vectors: A = [4 3 0], B = [5 3 1], and C=[4 3 2].

 By calculating the distance between processes9 (
2

A B− denotes Euclidiean distance

between A and B) we get

2

2

(,) [0.2 0 1] 1.2,

(,) [0 0 1] 1.0,

|| || [1 0 1] 2.0,

|| || [1 0 1] 2.0.

M A B

M B C

A B

B C

= =

= =

− = =

− = =

∑
∑
∑
∑

 (2.2)

Euclidean norm treats all dimensions equally; it shows that the distance between

processes A and B is the same as between processes B and C. However, we want to

emphasize the fact that A and B are further apart than B and C, since component c is

missing in A and metric M highlights this fact.

For those fingerprints that do not contain frequency information (vectors whose i-th value

is 1 when the element is present in the uncompressed trace and 0 otherwise), we can use a

simple metric

 * 0,
(,) .

,k

X Y
M X Y

X Y
∩ ≠ ∅⎧

= ⎨∞ ∩ = ∅⎩
 (2.3)

This measure is conservative, but is rather fast to compute

9 Measure (2.1) is calculated as M(A,B) = [(max(4,5)+1)/(min(4,5) + 1)-1]+ [(max(3,3)+1)/(min(3,3) + 1)-
1]+ [(max(0,1)+1)/(min(0,1) + 1)-1] = (6/5-1)+(4/4-1)+(2/1-1)=1.2

24

2.3.2.1.3 Algorithm for Comparing a Pair of Traces

Since the traces consist of multiple processes, we need to perform cross-comparisons

between each pair of processes and aggregate this data to obtain a quantitative description

of the distance between traces. To do this, we need a (possibly heuristic) distance

measure that calculates the distance between a pair of similar traces to be less than the

distance between a pair of less similar traces.

No simple one-dimensional measure of a complicated concept such as the “difference

between two traces” can capture all desired features. Is Moby Dick closer to the Book of

Genesis than it is to the Catcher in the Rye? It is unlikely that a simple heuristic can be

devised that answers this question to everyone’s satisfaction. Nevertheless, we need a

heuristic. Our heuristic is defined in Figure 4.

2.3.2.1.4 The Overall Approach

The algorithms implement SIFT through trace and process comparison, as well as

fingerprinting. During software execution, in a concurrent processing environment, a

trace t could consist of the multiple, parallel, processes executed during the software run.

If the total number of processes in a given trace t is equal to m then

t = {p1, p2, …, pm}.

Later, we will use this information to compute the similarity between given traces. In

general, a process may split into multiple threads. For the sake of simplicity, in this paper

we assume that each process consists of a single thread – henceforth processes and

threads are treated as equal. Comparing two multi-threaded processes is analogous to

comparing two traces with multiple processes.

Suppose we compare two traces t1 and t2 with number of processes equal to N and M

respectively at the level of compression l. Distances between processes of t1 and t2

are calculated and stored in matrix D with m rows and n columns (defined by the

conditions below). Function t(k) returns k-th process of trace t. The distance between

25

two traces is denoted by d.

Procedure compare_traces (t1, t2, l)

 //fill in the distance matrix

 for i ← 1 to N

 for j ← 1 to M

 D(i,j) ← compare_processes (t1(i), t2(j), l);

 //calculate the distance between traces

 (d1, p1) ← calc_trc_d(D);

 (d2, p2) ← calc_trc_d(transpose D);

 d ← (d1 + d2)/2,

 //percentage of non-overlapping processes

 p ← (p1 + p2) / (N + M);

 return (d, p);

//calculate distance between pair of traces

Procedure calc_trc_d(D)

 d ← 0; //distance between overlapping processes

 p ← 0; //number of non-overlapping processes

 for each row in D

 m the minimal distance in a given row;

 if d = ∞

 p++;

 else

 d += m;

 return (d, p);

Figure 4. Algorithm for measuring distance between traces.10

10 Note that we can speed up comparison process by keeping track of similar pairs of processes from
higher levels of compression.

26

Let the set of all possible elements of contextual information that can be captured during

software execution be denoted by E. A process p with n elements is represented by a

sequence

1

N
i i

p e
=

= (2.4)

where i indexes the ith event captured, and each event e∈E. In order to compute the

distance between two given traces, we need to compute that measure in terms of the

distance between the respective sets of processes contained within the two traces. In

essence, we perform cross-comparison between each pair of processes (one process from

each of the two given traces) to obtain their distance, and aggregate this data to obtain a

quantitative measure of the distance between the two given traces. The distance between

two given processes is computed as follows:

compare_processes(prc_id1, prc_id2, c_l) → d_p

where, prc_id1 and prc_id2 are processes at the level of compression c_l; and the

comparison process returns a measure of distance between processes d_p.

Compare_processes is outlined in Section 2.3.2.1.2.

The process information can be compressed (using lossy compression techniques, i.e.,

compression with loss of information) into the “fingerprints” introduced in Section

2.3.2.1.1. Individual uncompressed processes are independently compressed, using

different compression formulae, to obtain various compression levels. The level of

compression of a process specifies the type of fingerprint that should be used in the

comparison procedure.

Based on process comparison, we can now describe how the traces are compared. The

comparison procedure within any given context considered in Section 2.3.2.1 is defined

as follows:

compare_traces(trc_id1, trc_id2, c_l) → {d_t, p_p},

27

where trc_id1 and trc_id2 are execution traces at the level of compression c_l; and the

output of this comparison is given by a tuple of distance measure between traces d_t and

percentage of non-overlapping processes p_p. The parameter c_l is set by the analyst and

is, in fact, passed on to the compare_processes procedure discussed above. Details of

compare_traces are given in Section 2.3.2.1.3.

2.3.2.2 The Iterative-Unfolding Algorithms

As described in Section 2.3.1, the traces are compared iteratively from the highest to the

lowest level of compression. During each iteration, the comparison follows the procedure

described in Section 2.3.2.1.4. Recall from Section 2.3.2 that there are two practical

contexts for comparing traces: (i) a single trace against a set of traces and (ii) within a

given set of traces. Thus, Figure 5 and Figure 6 respectively describe the two algorithms

to deal with these contexts.

Assume that compression level l is in the range

[0, 1, …, N], where 0 is an uncompressed trace level and N is a fingerprint containing

the least amount of information. A single trace t is compared against a set of traces S.

The array Td (of size N+1) contains maximum measures of distance between traces

for different compression levels. Maximum percentage [0,1] of non-matching

processes is denoted by Tp. The end result is a set of traces below the threshold level.

Procedure P1(t, S, Td, Tp)

 for l = N to 0

 for each trace in S

 (d, p) ← compare_traces(t, trace, l) ;

 if d > Td(l) or p > Tp

 S = S – trace;

 return S;

Figure 5. Algorithm for comparing a single trace t against a set of traces S.

28

The traces are clustered using the Agglomerative Hierarchical Clustering (AHC)

algorithm [14]. It is computed by a function cluster(d_m,d_t),which takes the distance

matrix between traces d_m and the maximum distance between traces to be clustered d_t.

The distance between clusters is determined by measuring the maximum distance

between elements of each cluster. The clustering is stopped when, based on a particular

distance criterion11, the clusters are too far apart to be merged.

2.4 Analysis
In this section we analyze the algorithms presented in Section 2.3.2. The efficiency

analysis of the functions is described in Section 2.4.1. Section 2.4.2 describes constraints

within which the algorithms are accurate. Section 2.4.3 describes the overhead due to our

approach.

2.4.1 Efficiency

In Section 2.4.1.1 we discuss efficiency of the core algorithms. Efficiency of the

Iterative-Unfolding Algorithms is shown in Section 2.4.1.2. Special cases are discussed

in Section 2.4.1.3.

2.4.1.1 Core Algorithms Efficiency

The derivation of our algorithms asymptotic behaviour may be found in [24]. Only the

final results are presented here. Look at the maximum number of algorithm operations

required to compare a single trace t against a set of traces S (given in Figure 5). In the

worst-case scenario, when all traces within S are close to t and cannot be filtered out, we

will have to perform all iterations on the full set |S|:

 () () ()
2
0

max 2 2 2 2 2
1 0 0[(,)] | | | | | |

lKL L

lC P t S K S N L S N L S N L
α β

<

∈ + =
� �� � � � � �

���	��
 ���	��

O O O (2.5)

11 Given two clusters A and B, the distance is calculated by max{compare_traces (a, b, l) : a ∈ A, b ∈ B}.

29

where K is the maximum level of compression, N
� is the maximum possible number of

processes in a trace and
l

L
� is the maximum length of a given fingerprint at compression

level l. The comparison for l > 0 is performed using measures of distance (2.1) and (2.3);

comparison of uncompressed traces is performed at l = 0 (using diff[26]), see Section

2.3.2.1.2 for details. The term α arises from comparison of fingerprints and the term β

from comparison of uncompressed traces. Note that, in practice, most traces will be

filtered out at high levels of compression and that the length of fingerprints, by

construction, should be small.

The algorithm for comparison within a set of traces calls a recursive procedure

“compare” (given in Figure 6). The running time, T, of the function “compare” can be

represented as

 ()
1

(| |) | | / compare(),
a

i S
i

T S T S b
=

= +⎢ ⎥⎣ ⎦∑ P (2.6)

where SP is a set of properties of traces in set S. Coefficients bi (fraction of elements in

S) and a (number of clusters) change at each iteration − they are obtained from the

clustering procedure (called from “compare”) and will depend on SP .

The problem formulated in (2.6) is too general and, to the best of our knowledge, cannot

be “unraveled” without knowing distributions of the parameters bi and a. The worst-case

scenario is when a=1 and bi=1, i.e., members of the set S cannot be partitioned into

subsets since they are too close to each other. In this case

 () () ()
2
0

max 2 2 2 2 2 2 2 2
2 0 0[()] | | | | | | .

lKL L

lC P S S KN L S N L S N L
<

∈ + =
� �� � � � � �

O O O (2.7)

In closing, the worst-case scenario computational time for P1(t,S) grows linearly with the

number of traces, and quadratically with the number of processes per trace and the length

30

of traces. The algorithm P2(T,S) is quadratic in the number of traces, the number of

processes per trace and the length of traces.

Assume that compression level l is in the range

[0, 1, … , N], where 0 is an uncompressed trace level and N is a fingerprint

containing the least amount of information. The initial set of traces is given by trace

set S. S(i) returns the i-th member of the set S. Array Td (of size N+1) contains the

maximum measures of distance between traces for different compression levels.

Maximum percentage [0,1] of non-matching processes is denoted by Tp. Global

variable Sout stores similar clusters of traces.

//Transform 2-tuples distance measure into a scalar

Procedure condense_tuple(d, p, Tp)

 if p > Tp

 m ← ∞;

 else

 m ← d;

 return m;

//recursive comparison function (note that recursion can be //“unraveled” by parsing

the tree in breadth)

Procedure compare (trace_set, l, Td, Tp)

 //calculate distance matrix D between traces

 M ← cardinality(trace_set);

 for i=1 to M

 for j=i+1 to M //D is symmetric

 (d, p) ← compare_traces(trace_set(i), trace_set(j), l);

 D(i, j) ← condense_tuple(d, p, Tp);

 //Cluster traces using distance data in D

 clusters ← cluster(D, Td(l));

 if (l > 0)

 for each cluster in clusters

31

 compare(cluster, l − 1, Td, Tp)

 else //reached uncompressed level

 add trace_set to Sout;

//main procedure

Procedure P2(S)

 Set Td and Tp;

 compare (S, N, Td, Tp);

 return Sout ;

Figure 6. Algorithm for comparing traces within a given set S.

2.4.1.2 Special Cases

We identify two cases where the direct comparison approach is more efficient than the

iterative-unfolding approach. The first case occurs when the traces of interest are very

similar; the traces won’t be filtered out at higher levels of comparison and so direct

comparison becomes necessary at the uncompressed level. The second case occurs when

the traces are small (i.e., the length of the processes in the traces is comparable to the

length of the fingerprints) and the traces consist of only a few processes so comparison

times between the iterative-unfolding approach and uncompressed comparisons would be

more or less equivalent. Note that if the number of processes is large, our approach may

yield superior results by aggregating information from different processes into a single

fingerprint. In all other cases, our approach is superior.

An additional case occurs when one needs to identify identical traces (e.g., for

identification of duplicate test cases). Two iterations are needed in this case. The first one

uses hashes of processes as fingerprints. The second iteration is needed to verify the

result of first iteration by analyzing uncompressed traces (the Levenshtein distance [18]

between processes should be equal to 0).

32

2.4.2 Method Accuracy

In order for the iterative-unfolding approach to be accurate, similar traces must not be

accidentally discarded at high levels of compression (we throw away all traces farther

apart than a level-specific threshold). To accomplish this, we must carefully select the

threshold’s values for distance measures12 between traces. General guidance is given by

the following conjecture (axiomatic in nature).

We conjecture that for every distance threshold Tk+1 > 0 at level k + 1 there exists

another threshold Tk > 0 for level k, such that if dk+1(A,B) > Tk+1 then dk(A,B) > Tk.

(where dj(A,B) represents the measure of distance between traces A and B at

compression level j). This conjecture is reasonable but we have not proved it, nor

do we have an explicit way to compute Tk from Tk+1 except in some special cases

as detailed below. Traces A and B are considered dissimilar at compression level j

if dj(A,B) > Tj. If they are not dissimilar, they are considered to be similar. Our

conjecture now states that if two strings are dissimilar at a high level of

compression, they will also be dissimilar at the corresponding lower level of

compression. For the example of strings with N letters, each taking two values,

where lexical distance d0 is between 0 and N and letter count distance d1 is also

between 0 and N, T:=T1= T0. In this case, it follows that if two compressed strings

are dissimilar at level 1 with threshold T, they must also be dissimilar at

uncompressed level 0 at the same threshold T.

If this conjecture holds, an analyst can specify the desired zero compression threshold T0

and use the conjecture backwards to generate thresholds for all other levels T1, …, TK,

where K is the highest level of compression13.

12 Examples of measures of distance are given in Section 2.3.2.1.2.
13 In the trivial case of finding identical traces the measure of distance will be equal to 0 for all levels of
compression. Note there is no general way to determine a bound on the fingerprint distance given a bound

33

The iterative-unfolding algorithms (described in Section 2.3.2) can then be applied to

traces of interest (starting at level K). There will be no false removals of similar traces

assuming the conjecture holds.

Dissimilar traces are rapidly rejected. Clearly there will be special cases when our

method will fail to filter out distant traces. For example, consider a pair of strings “aabb”

and “bbaa”. The character frequencies of these two strings are identical, so any p-norm

distance or our metrics (2.1) and (2.2) will show that these two strings are identical at the

1-word level (sequences of strings of length 1). However, the Levenshtein distance

between the uncompressed strings will take the largest possible value of 4. Note that the

fraction of such string pairs from the total number of permutations decreases rapidly with

the growth of string length and dictionary size (number of distinct words), i.e., such

events should be rare. For example, percentage of non-filtered strings of length N=2 and

letter dictionary of size d=2 is 12.5%; string of N=2 and d=4 is 4.69%; string of N=6 and

d=2 is 0.05%; and strings of N=6 and d=4 is 0.04%.

2.4.3 Iteration-unfolding overheads

Prior to comparing traces, there is a need to generate the fingerprints, which consumes

time and storage space. However, the benefit of the proposed approach would outweigh

the time overhead because in a test environment we would expect that fingerprinted

traces would be repeatedly used for comparison purposes. While the overhead due to

storage does exist, we anticipate that this would not be too significant.

on the final edit-distance metric, since strings of any and all final edit-distance metrics are mapped into
compressed fingerprints with any and all compressed level distances.

34

2.5 Implementation
With reference to Figure 1, such traces can be automatically produced by suitably

instrumenting the application software. During software execution, multiple processes

invoking different threads can run in parallel. Thus, a trace can consist of multiple

execution paths collected from the individual processes executed during the software run.

The current implementation uses ten levels of compression. The lowest level of

compression is denoted by L0; the highest by L9. For a given trace, we have:

L0. Uncompressed trace,

where each process within the trace is represented by a separate fingerprint. We now

condense the fingerprinted information for each process in L0 to obtain, independently,

levels L1 to L5:

L1. List of 2-words14 with frequency information (FI),

L2. List of 1-words with FI,

L3. List of function names with FI,

L4. List of components with FI,

L5. List of components without FI.

Finally, the fingerprinted information from different processes at level L0 is merged into

a single fingerprint per trace. This speeds up comparison, because pair-wise comparison

of processes reduces to a single comparison for each pair of traces.

L6. Merged list of function names with FI,

14 An l-word represents a continuous substring of length l from a string. A trace can be represented as a
string, where each trace element is a character; see Section 3.2.1.1 for details.

35

L7. Merged list of function names without FI,

L8. Merged list of components with FI,

L9. Merged list of components without FI.

We use MU measure of distance for L0, (,)kM X Y for levels with frequency information,

and *(,)kM X Y for levels without frequency information. The choice of the number of

compression levels depends on such factors as: the number of levels of abstractions of

traces considered appropriate due to variety and complexity of program constructs,

application domain complexity, and the size of the trace dataset. In essence, the greater

the variability in traces, the greater the chance that a higher number of compression levels

are required. In our study, we decided to have ten levels. The comparison process,

including clustering, is implemented based on the algorithms described in Section 2.3.2.2.

The tool’s prototype is implemented in Perl.

2.6 Validation Case Study
Our experimental ground is the complex system alluded to Section 2.1. Out of hundreds

of thousands of test cases (from all phases of testing) that in some cases have a legacy of

more than ten years, we gathered 1416 multithreaded tests cases from 21 test suites

covering various features of the SUS15. An internal capturing facility gathers and stores

execution paths and then outputs them in the format shown in Figure 1.

The captured 1416 traces consist of 73763 processes. Descriptive statistics of the

distributions of process-length, trace-length and the number of processes per trace are

given in Table 3.

15 While there are thousands of execution traces in the SUS trace-database, it takes time to prepare them
for trace analysis (e.g., due to analysing and modifying individually the test-suite scripts). This is an on-
going process in our research to gather more traces.

36

We created fingerprints for the traces using the 10 levels of compression described in

Section 2.5. The total space overhead is 9.1% (of the space needed to store the raw

traces), which makes it feasible to store the fingerprints.

Table 3. Descriptive statistics of traces
Distribution of Min Mean Max

number of processes per trace 2.00E0 5.21E1 1.41E3
process-length 1.00E0 3.70E4 1.51E8
trace-length 4.26E2 1.93E6 1.55E8

To validate the comparison of a single trace against a set of traces, we randomly picked

a trace from our experimental set of 1416 traces and compared it against a random subset

of traces from the experimental set. Such comparisons were performed 450 times (i.e., 30

draws of subsets of different sizes: 10 to 1410 traces with a step-size of 100). All

computations were performed on an Intel Xeon™ 5160, 3.0 GHz Dual Core computer.

The execution time results are shown in Figure 7, where the different trace subset-sizes

(10, 110, 210, etc.) are shown on the X-axis and the execution times on the Y-axis. We

see that the computational time for each draw (denoted by circles) splits into two

patterns: the first, where computation time is less than 5 seconds, and the second, where

the computational time is of the order of 250 seconds. The first pattern (lower part of the

figure) represents the situation when there are no similar traces in the reference subset;

and, therefore, all traces are eliminated at high levels of compression. The second pattern

(upper part of the figure) represents the situation when the residual traces in the reference

subset (after elimination) are the same (or very similar to one another). Since these traces

are at lower levels of compression, the comparison times are high. The frequency-counts

of the number of comparisons (totalling 30 for any subset-size) are shown with the lines

(right vertical axis). The solid line shows the number of comparisons in the lower pattern,

while the dotted line shows this in the upper pattern. Note that for the first pattern, the

execution time grows linearly with the increase of the subset-sizes (R2 = 0.998 and p-

value < 2.2×10-16). However, for the second pattern, even though execution times are

constant, the variance of 5.4 seconds in execution times masks the linear growth of

37

approximately 0.4 seconds over 100 traces. Because the algorithm performs pair-wise

comparison of processes at the higher levels of compression (L0-L5), we might expect

execution time to grow cubicly (the number of operations is proportional to the number

of traces multiplied by the number of pair-wise process comparisons). However, since

most of the traces are filtered out at the higher levels of compression, where information

about traces is discarded (L6-L9), the complexity is reduced to linear.

Figure 8 and Figure 9 show the results of comparing within the given set of traces (i.e.,

clustering). The experimental set-up here is similar to the one described earlier. Figure 8

shows, based on regression analysis, that the execution time for clustering grows

quadratically (R2 = 0.991 and p-value < 10-16) with the growth of the subset-sizes (≈23.0

seconds per 100 traces). As with the first experiment, the influence of pair-wise thread

comparison is negligible, since most of the traces are discarded at the higher levels of

compression (L6-L9). Therefore, comparison time grows quadratically and not

quartically (regression analysis confirms this observation). Figure 9 shows that 85 to 90

percent of traces are filtered out after six iterations (start to L4) of clustering. Again, this

demonstrates that the approach is scalable. When we compare these results with the

results of the case study that we performed on a dataset of 116 traces [24], we see that

additional levels of compression are needed with increase of the dataset size. In [24] most

of the traces were filtered out after 4 iterations (start to L6), majority of the clusters were

eliminated by that time as well.

38

200 400 600 800 1000 1200 1400

0.
1

0.
5

5.
0

50
.0

Traces subset size

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0
5

10
15

20
25

30

N
um

be
r o

f d
at

a
po

in
ts

Figure 7. Timing of comparing a trace against a set of traces; timing for each draw

is denoted by circles; values are plotted on the left axis. Solid line shows the number

of comparisons in the lower pattern; dotted line in the upper pattern; values of both

lines are plotted on the right vertical axis.

If we assume that the behavior of our algorithms will hold for larger datasets, then we can

predict the time needed to perform computations for large values of |S| by extrapolating

fitted regression.

The results of extrapolation for the algorithm P1(t,S) are given in Figure 10a. In order to

compare a single trace with a set of 10,000 traces, an analyst will need ≈39 seconds (on

average) to filter out dissimilar traces, plus an additional 250 seconds for comparing

every trace in S so similar to t that it should be compared with t at the uncompressed

level. The typical and frequent situation for application of this algorithm is when a defect

is found in the field, and the analyst, upon obtaining a UT from the user, needs to

compare it against all HTs to identify missing coverage where a defect may potentially

reside.

39

0 200 400 600 800 1000 1200 1400

0
10

00
20

00
30

00
40

00
50

00

Traces subset size

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Figure 8. Timing of comparing traces within a given set

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Level of compression

N
um

be
r o

f r
em

ai
ni

ng
 tr

ac
es

 (f
or

 a
ll

cl
us

te
rs

)

Start L9 L8 L7 L6 L5 L4 L3 L2 L1 L0

Figure 9. Number of traces remaining after each iteration of comparing traces

within a given set

40

Figure 10b shows the extrapolated data for the algorithm P2(S). In order to perform

filtering within a set of 10,000 traces, an analyst will need 2.3 ×105 seconds (≈2.6

days)16. This type of analysis is useful for customer profiling, identification of redundant

test cases, etc. Note that such analysis is typically infrequent in a production

environment.

As described in the Introduction section, our attempt to experiment with the kBehaviour

prototype [15] clearly indicated that the performance of the SIFT algorithm is better than

that of the kBehaviour approach.

We also compared the execution time of comparing a pair of traces using our technique

and comparing the same pair of traces using diff [26]. Processes within traces were

compared pair-wise. Traces were represented using text files with each trace record

stored on a separate line. The SIFT approach significantly outperforms diff. For example,

the comparison of a medium size trace T1 (113 processes, ≈106 elements) with a small

trace T2 (40 processes, ≈103 elements) took 0.02 seconds with our iterative-unfolding

technique and 1476 seconds with diff. The comparison of T1 with another medium size

trace T3 (147 processes, ≈106 elements) took 0.05 seconds using our technique and

12635 seconds with diff. Further tests were just as confirmatory. Thus, we can see that

direct comparison using diff does not scale. This can be explained two ways. First, the

complexity of comparing two different strings with diff is quadratic [26]. Second, since

we need to compare each pair of processes independently, the complexity increases

quadratically with an increase in the number of processes.

16 Note that our prototype is implemented in Perl; a production version in C/C++ would be faster.
Additional increase in speed should result from parallelisation of the algorithms.

41

0 2000 6000 10000

0
10

20
30

40

P1(t, S)

a
Traces set size |S|

P
re

di
ct

ed
 e

xe
cu

tio
n

tim
e

(s
ec

)

0 2000 6000 10000

0
10

00
00

20
00

00

P2(S)

b
Traces set size |S|

P
re

di
ct

ed
 e

xe
cu

tio
n

tim
e

(s
ec

)

Figure 10. Predicted time (dotted lines represent 95% confidence bands) for (a)

P1(t,S) − linear, and (b) P2(S) − quadratic, based on extrapolation of the fitted

regression.

42

2.7 Conclusion And Future Work
The comparison of traces resulting from the execution of a software system is of

considerable interest for a variety of purposes, such as software testing [1-3], program

comprehension [13-15], and security [11]. In this paper, we have proposed a new,

iterative-unfolding, approach (called SIFT) for filtering-out traces to help speed up the

overall comparison process.

The essence of this approach is that it iteratively compares traces at different levels of

compression, from high to low, and in the process it rapidly eliminates dissimilar traces,

eventually leaving residual, similar, traces at the lowest level of compaction. Once

similar traces are identified, they can be passed to external tools for further analysis. We

use fingerprinting techniques for compressing traces, and comparison and clustering

algorithms for identifying similar traces.

Our approach can be packaged as a framework, where the component algorithms and

techniques can be replaced with alternate techniques making the framework portable to

other development environments. Further details are web-accessible from [24, Section 5],

where also details of the usage environment of this technology are described (see [24,

Section 6]).

The paper describes a significant case study involving 1416 traces from a large,

distributed software system in use at numerous sites worldwide. The efficiency of the

approach is linear with the growth of the number of traces when comparing a trace

against a set of traces, and quadratic when comparing within a set of traces using

clustering techniques (see Figure 10). The timings from the case study data are feasible in

a practical environment. From these results, we thus conclude that the iterative-unfolding

approach is scalable for use in a practical environment

We plan to conduct a number of further case studies. These include, for example,

increasing the dataset size; validation of set-to-set comparisons; and cost-benefit analysis

43

in a practical environment. Our tool development effort is on-going with the long-term

goal being to transfer the technology to the production environment.

References
[1] Avvari, M. V., Chin, P. A., Nandigama, M. K. and Dhanikonda, Software

application test coverage analyzer. U.S. Patent #6,978,401, Sun Microsystems,
Inc., U.S., (2005).

[2] Biermann, A. and Feldman, J. On the Synthesis of Finite State Machines from
Samples of their Behavior. IEEE Trans. Computers, 21, 6 (1972), 592–597.

[3] Cook, J. E. and Wolf, A. Discovering Models of Software Processes from Event-
Based Data. ACM Trans. Software Eng. and Methodology, 7, 3 (1998), 215-249.

[4] Cotroneo, D., Pietrantuono, R., Mariani, L. and Pastore, F. Investigation of
Failure Causes in Workload-Driven Reliability Testing. In Proc. 4th International
Workshop on Software Quality Assurance (2007), 78-85.

[5] Dallmeier, V., Lindig, C. and Zeller, A. Lightweight Defect Localization for Java.
In Proc. European Conference on Object Oriented Programming (2005), 528-
550.

[6] Davison, M., Gittens, M., Godwin, D., Madhavji, N. H., Miranskyy, A. V. and
Wilding, M. Improvement of computer software test coverage analysis. . U.S.
Patent Application # 11/549410, IBM Corp., (2006).

[7] Elbaum, S., Kanduri, S. and Andrews, A. Trace anomalies as precursors of field
failures: an empirical study Empir. Software Eng. , 12, 5 (2007), 447-469.

[8] Elbaum, S., Rothermel, G., Kanduri, S. and Malishevsky, A. G. Selecting a Cost-
Effective Test Case Prioritization Technique. Software Quality Control, 12, 3
(2004), 185-210.

[9] Feder, T. and Motwani, R. Clique partitions, graph compression and speeding-up
algorithms. J. Comput. Syst. Sci., 51, 2 (1995), 261-272.

[10] Fremuth-Paeger, C. and Jungnickel, D. Balanced network flows. VIII. A revised
theory of phase-ordered algorithms and the O(sqrt(n) m log(n^2 /m)/log n) bound
for the nonbipartite cardinality matching problem. Networks, 41, 3 (2003), 137-
142.

[11] Greevy, O., Ducasse, S. and Girba, T. Analyzing Feature Traces to Incorporate
the Semantics of Change in Software Evolution Analysis. In Proc. 21st IEEE Int'l
Conference on Software Maintenance (2005), 347-356.

[12] Hamou-Lhadj, A. and Lethbridge, T. C. Compression techniques to simplify the
analysis of large execution traces. In Proc. 10th Int'l Wkshp on Program
Comprehension (2002), 159-168.

44

[13] Haran, M., Karr, A., Orso, A., Porter, A. and Sanil, A. Applying classification
techniques to remotely-collected program execution data. SIGSOFT Softw. Eng.
Notes, 30, 5 (2005), 146-155.

[14] Jain, A. K., Murty, M. N. and Flynn, P. J. Data clustering: a review. ACM
Computing Surveys, 31, 3 (1999), 264-323.

[15] kBehavior http://www.lta.disco.unimib.it/kbehavior/.

[16] Kuhn, A. and Greevy, O. Exploiting the Analogy Between Traces and Signal
Processing In Proc. 22nd IEEE Int'l Conference on Softw. Maintenance (2006),
320-329.

[17] Lee, W., Stolfo, S. J. and Chan, P. K. Learning patterns from unix process
execution traces for intrusion detection. In Proc. AAAI Workshop: AI Approaches
to Fraud Detection and Risk Management (1997), 50-56.

[18] Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and
reversals (Russian). Doklady Akademii Nauk SSSR, 163, 4 (1966), 845-848.

[19] Li, M., Ma, B., Kisman, D. and Tromp, J. PatternHunter II: Highly Sensitive and
Fast Homology Search. J. of Bioinformatics and Computational Biology, 2, 3
(2004), 417-440.

[20] Mariani, L. and Pezzè, M. Inference of component protocols by the kBehavior
algorithm. University of Milano Bicocca, 2004.

[21] Mariani, L. and Pezzè, M. Dynamic Detection of COTS Component
Incompatibility. IEEE Software, 24, 5 (2007), 76-85.

[22] Masri, W., Podgurski, A. and Leon, D. An Empirical Study of Test Case Filtering
Techniques Based on Exercising Information Flows. IEEE Trans. Softw. Eng., 33,
7 (2007), 454-477.

[23] Miranskyy, A. V., Gittens, M. S., Madhavji, N. H. and Taylor, C. A. Usage of
Long Execution Sequences for Test Case Prioritization. In Proc. Suppl. Proc. of
18th IEEE Int'l Symp. on Softw. Reliability Eng. (2007).

[24] Miranskyy, A. V., Madhavji, N. H., Gittens, M. S., Davison, M., Wilding, M. and
Godwin, D. An Iterative, Multi-Level, and Scalable Approach to Comparing
Execution Traces, TR-74.209. IBM Center for Advanced Studies (CAS), Toronto,
2007 (https://www.ibm.com/ibm/cas/publications/index.shtml).

[25] Moe, J. and Carr, D. A. Using execution trace data to improve distributed
systems. Softw. Pract. Exper., 32(2002), 889-906.

[26] Myers, E. An O(ND) Difference Algorithm and Its Variations. Algorithmica, 1, 2
(1986), 251-266.

[27] Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J. and Wang, B.
Automated support for classifying software failure reports. In Proc. 25th Int'l
Conference on Software Engineering (2003), 465 - 475.

45

[28] Reiss, S. P. and Renieris, M. Encoding program executions. In Proc. 23rd Int'l
Conf. on Software Engineering (2001), 221-230.

[29] Renieris, M., Ramaprasad, S. and Reiss, S. P. Arithmetic program paths. In Proc.
10th European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engineering
(2005), 90-98.

[30] Rothermel, G., Harrold, M. J., Ostrin, J. and Hong, C. An Empirical Study of the
Effects of Minimization on the Fault Detection Capabilities of Test Suites. In
Proc. International Conference on Software Maintenance (1998), 34-43.

[31] Yuan, C., Lao, N., Wen, J.-R., Li, J., Zhang, Z., Wang, Y.-M. and Ma, W.-Y.
Automated known problem diagnosis with event traces. In Proc. 2006 EuroSys
conference (2006), 357-388.

46

Chapter 3

3 Using Entropy Measures for Comparison of Software
Traces

The analysis of execution paths (also known as software traces) collected from a given

software product can help in a number of areas including software testing, software

maintenance and program comprehension.

In this chapter, we study the applicability of Shannon entropy and three extended

entropies (Landsberg-Vedral, Rényi, and Tsallis) to the classification of traces related to

various software defects. Our validation study shows the three extended entropies, with

parameters chosen to emphasize rare events, show good performance.

3.1 Introduction
A software execution trace can be thought of as a log of information captured during any

particular execution-run of software. For example, a trace in Figure 11 shows the

program flow entering function f1; calling f2 from f1; f2 recursively calling itself, and,

eventually, exiting these functions. In order to capture this information, each function in

the software is instrumented to log entry and exit points to a function.

Figure 11. An example of a trace

The comparison of program execution traces is important for a number of problem areas

in software development and use. In the area of testing, for example, such comparisons

are used to: 1) determine how well user execution paths (traces collected in the field) are

1 f1 entry
2 | f2 entry
3 | | f2 entry
4 | | f2 exit
5 | f2 exit
6 f1 exit

47

covered in testing [3, 7, 29]; 2) detect anomalous behavior arising during a component's

upgrade or reuse [14]; 3) map and classify defects [9, 18, 24]; 4) determine redundant test

cases executed by one or more test teams [20]; and 5) prioritize test cases (to maximize

execution path coverage with a minimum number of test cases) [8, 15]. Trace

comparisons are used also in operational profiling (for instance, in mapping the

frequency of execution paths used by different user classes) [29] and intrusion analysis

(e.g., detecting deviations of field execution paths from expectations) [13].

For some problems, such as test case prioritization, traces gathered in a condensed form

(such as a vector of executed function names or caller-callee pairs) are adequate [8].

However, for others, such as the detection of missing coverage and anomalous behavior

using state machines, detailed execution paths are necessary [3, 14]. The time required

for analyzing traces can sometimes be extremely important. For instance 1) a customer

support analyst using traces to map a reported defect onto an existing set of defects to

identify the problem's root cause and advise a customer on how to fix her problem, and 2)

a development analyst working with the testing team to identify missing coverage that

resulted in a field defect.

Many trace comparison techniques are not scalable [16, 5]. Based on our experience,

support personnel of a large-scale industrial application with hundreds of thousands of

installations can collect tens of thousands of traces per year. Moreover, a trace collected

on a production system is populated at a rate of millions of records per minute.

The described need to compare traces, together with a lack of reliable and scalable tools

for doing this, motivated us to investigate alternate solutions. To speed up trace

comparisons, we propose that traces first be filtered out from the given set, rejecting

those that are not going to match with the test cases, allowing just the remaining few to

be compared for target purposes. The underlying assumption (based on our practical

experience) is that most traces are not even close to being similar, just a few are similar,

and only a very few are identical.

48

This strategy is implemented and validated in the Scalable Iterative-unFolding Technique

(SIFT) [16]. The collected traces are first compressed into several levels prior to

comparing them. Each level of compression uses a unique signature, which we call a

“fingerprint”17. Starting with the highest compression level, the traces are compared, and

unmatched ones are rejected. Iterating through the lower levels until the comparison

process is complete leaves only traces that match at the lowest (or uncompressed) level.

The SIFT objective ends here. The matched traces can then be passed on to external tools

for further analysis such as defect or security breach identification.

The process of creating a fingerprint can be interpreted as a map from the very high

dimensional space of traces to a low, ideally one-dimensional, space. Simple examples of

such fingerprints are 1) the total number of unique function names in a trace and 2) the

number of elements in a trace. However, while these fingerprints may be useful for our

purposes, neither are sufficient. The “number of unique function names” fingerprint

doesn't discriminate enough: many quite dissimilar traces can share the same function

names called. At the other extreme, the number of elements in the trace discriminates too

much − traces which are essentially similar may have varying numbers of elements. The

mapping should be such that projections of traces of different types should be positioned

far apart in the resulting small space.

Using the frequency of the function names called is the next step in selecting useful

traces. A natural one dimensional representation of this data is the Shannon information

[21], mathematically identical to the entropy of statistical mechanics. Other forms of

entropy information, obeying slightly less restrictive axioms, have been defined [1].

These extended entropies (as reviewed in [4] are indexed by a parameter q which, when

= 1q reduces them to the traditional Shannon entropy and which can be set to make them

more (< 1q) or less (> 1q) sensitive to the frequency of infrequently called functions,

17 The fingerprint of the next iteration always contains more information than the fingerprint of the
previous iteration, hence the term unfolding.

49

improving the classification power of algorithms. Indeed, an extended Rényi entropy [19]

with = 0q returns the “number of unique function names” fingerprint, the Hartley

entropy of information theory.

The entropy concept can also be extended in another way. Traces differ not only in which

functions they call but in the pattern linking the call of one function with the call of

another. As such it makes sense to collect not only the frequency of function calls, but

also the frequency of calling given pairs, triplets, and in general l -tuples of calls. The

frequency information assembled for these “ l -words” can be converted into “word

entropies”, for further discriminatory power. In addition each record in a trace can be

encoded in different ways (denoted as c) by incorporating various information such as a

record's function name or type.

In this paper we study the applicability of the Shannon entropy [21] and the Landsberg-

Vedral [12], Rényi [19], and Tsallis [22] entropies to comparison and classification of

traces related to various software defects. We also study the effect of q , l , and c values

on the classification power of the entropies. Note that the idea of using word entropies for

classification problems in general is not a new contribution of this paper.

Similar work has been done to apply word entropies classification problems in

bioinformatics [23] and in the analysis of natural languages [6]. However, to the best of

our knowledge, no one has applied word entropies to compare software traces (although

[28] suggested using Shannon entropy to measure the complexity of software traces).

The structure of the chapter is as follows: in Section 3.2 we define entropies and explain

the process of trace entropy calculation. The way in which entropies are used for trace

classification is shown in Section 3.3. A case study describing and validating the

applicability of entropies for trace classification is shown in Section 3.4. Finally, Section

3.5 summarizes the chapter.

50

3.2 Entropies and Traces: definitions
In this section, we describe techniques for extracting the probability of various events

from traces (Section 3.2.1) and usage of this information to calculate entropies of traces

(Section 3.2.2).

3.2.1 Extraction of probability of events from traces

A trace can be represented as a string, where each trace record is encoded by a unique

character. There exists a number of ways to encode the character. We concentrate on the

following three character types c :

1. Record's function name (F),

2. Record's type (FT),

3. Record's function names, type, and depth in the call tree (FTD).

In addition, we can generate consecutive and overlapping substrings18 of length l from a

string. We call such substrings l -words. For example, a string “ABCA” contains the

following 2-words: “AB”, “BC”, and “CA”.

One can think of a trace as a message generated by a source with source dictionary

1 2= { , , , }nA a a a… consisting of n l -words ia , and discrete probability distribution

1 2= { , , , }nP p p p… , where ip is probability of ia . The dictionaries A and their

respective probability distributions P for various values of c and l for the trace given in

are shown in Table 4.

18 The substring can start at any character i , where 1i n l≤ − + .

51

Table 4. Dictionaries of a trace given in Figure 11

C l n A P
F 1 2 f1, f2 1/3, 2/3
F 2 3 f1-f2, f2-f2, f2-f1 1/5, 3/5, 1/5
F 3 3 f1-f2-f2, f2-f2-f2, f2-f2-f1 1/4, 1/2, ¼
FT 1 4 f1-entry, f1-exit, f2-entry, f2-exit 1/6, 1/6, 1/3, 1/3
FTD 1 6 f1-entry-depth1, f1-exit-depth1, f2-entry-depth2,

f2-exit-depth2, f2-entry-depth3, f2-exit-depth3
1/6, 1/6, 1/6,
1/6, 1/6, 1/6,

Let us define a function α that, given a trace t , will return a discrete probability

distribution P for l -words of length l and characters of type c :

 (; ,).P t l cα← (3.1)

The above empirical probability distribution P can now be used to calculate the entropy

of a given trace for a specific l -word with characters of type c . We suppress the

dependence of P (and the individual ip s) on t , l , and c . Let us now define entropies

and discuss how we can utilize P in calculation of these entropies.

3.2.2 Entropies and traces

The Shannon entropy [21] is defined as

=1

() = log ,
n

S i b i
i

H P p p−∑ (3.2)

where P is the vector containing probabilities of the n states, and ip is the probability

of i -th state. Logarithm base b controls the units of entropy. In this paper we set = 2b ,

measuring entropy in bits.

Three extended entropies, Landsberg-Vedral [12], Rényi [19], and Tsallis [22] are

defined, respectively as:

52

 []2

1 1/ (;)(;) = ,
1

log (;)
(;) = , and

1
(;) 1(;) = ,
1

L

R

T

Q P qH P q
q

Q P q
H P q

q
Q P qH P q

q

−
−

−
−

−

 (3.3)

where 0q ≥ is the entropy index and

=1

(;) = .
n

q
i

i
Q P q p∑ (3.4)

The extended entropies reduce to the Shannon entropy (by L'Hôpital's rule) when = 1q .

The extended entropies are more sensitive to states with small probability of occurrence

than the Shannon entropy for 0 < < 1q . Setting > 1q leads to increased sensitivity of the

extended entropies to states with high probability of occurrence.

The entropy, Z , of a trace, t , for a given l , c , and q is calculated by inserting the

output of Equation (3.1) into one of the entropies described in Equations (3.2) and (3.3):

 [](; ,);EZ H t l c qα← (3.5)

where { , , , }E L R T S∈ . Note that if =E S , this is the Shannon entropy and q is ignored.

3.3 Usage of entropies for classification of traces
A typical scenario for trace comparison is the following. A software service analyst

receives a phone call from a customer reporting software failure. The analyst needs to

quickly determine the root cause of this failure and identify if 1) this is a rediscovery of a

known defect exposed by some other customer in the past or 2) this is a newly discovered

defect. If the first hypothesis is correct, then the analyst will be able to quickly provide

the customer with a fix or describe a workaround for the problem. If the second

hypothesis is correct the analyst must alert the maintenance team and start a full scale

53

investigation to identify the root-cause of this new problem. In each case, time is of the

essence -- the faster the root cause is identified, the faster the customer will receive a fix

to the problem and become less unsatisfied.

In order to validate the first hypothesis, the analyst asks the customer to reproduce the

problem with a trace capturing facility enabled. The analyst can then compare the newly

collected trace against a library of existing traces collected in the past (with known root-

causes of the problems) and identify potential candidates for rediscovery. To identify a

set of traces related to similar functionality the library traces are usually filtered by names

of functions present in the trace of interest. After that the filtered subset of the library

traces is examined manually to identify common patterns with the trace of interest.

If the analyst finds an existing trace with common patterns then the first hypothesis holds.

Otherwise the analyst concludes19 that this failure relates to a newly discovered defect

and that the second hypothesis is valid. With tens of thousands of traces in the library the

manual approach becomes laborious. This process is similar in nature to usage of an

Internet search engine. A user provides to the search engine keywords of interest and the

engine's algorithm returns a list of web pages ranked according to their relevance to

keywords. The user examines the returned pages to identify pages most relevant to her.

To automate this approach using entropies as fingerprints, we need an algorithm that

would compare a trace against a set of traces, rank this set based on the relevance to a

trace of interest, and then return the top X closest traces for manual examination to the

analyst. In order to implement this algorithm, we need a measure of distance between a

pair of traces to quantify their closeness described in Section 3.3.1, and the ranking

algorithm described in Section 3.3.2. Efficiency of the algorithm is analyzed in

19 This is a simplified description of the analysis process. In practice the analyst will examine defects with
similar symptoms, consult with her peers, search a database with descriptions of existing problems, etc.

54

Section 3.3.3. A drawback associated with usage of entropies as fingerprints is shown in

Section 3.3.4.

3.3.1 Measure of distance between a pair of traces

We can obtain multiple entropy-based fingerprints for a trace by varying values of E , q ,

l and c . Let us denote a complete set of 4-tuples of [, , ,]E q l c as M . We define the

distance between a pair of traces it and jt as:

[]

[]{ }

2

=1

(; ,); (; ,);
(, ;) = ,

max (; ,);

m E i k k k E j k k kk k
i j

k E k k kk

H t l c q H t l c q
D t t M

H t l c q

α α

α

⎧ ⎫⎡ ⎤−⎪ ⎪⎣ ⎦
⎨ ⎬
⎪ ⎪⎩ ⎭

∑ (3.6)

where m is the number of elements in M , and []{ }max (; ,);E k k kk
H t l c qα denotes the

maximum value of Ek
H for the complete set of traces under study for a given kq , kl , and

kc . This denominator is used as a normalization factor to set equal weights to fingerprints

related to different 4-tuples in M .

Formally (3.6), satisfies three of the four usual conditions of a metric:

(, ;) 0,

(, ;) = (, ;),

(, ;) (, ;) (, ;).

i j

i j j i

i k i k k j

D t t M

D t t M D t t M

D t t M D t t M D t t M

≥

≤ +

 (3.7)

However, the fourth condition (, ;) = 0 =i j i jD t t M t t⇔ (identity of indiscernibles) holds

true only for the fingerprints of traces; the actual traces may be different even if their

entropies are the same. In other words, the identity of indiscernibles axiom only “half”

holds: = (, ;) = 0,i j i jt t D t t M⇒ but (, ;) = 0 = .i j i jD t t M t t⇒ As such, D represents a

“pseudo-metric”. Note that (, ;) [0,)i jD t t M ∈ ∞ and our hypothesis is the following: the

smaller the value of D , the closer the traces.

55

Note that for a single pair of entropy-based fingerprints the normalization factor can be

omitted and we define D as

 [](, ; , , ,) = (; ,); (; ,); .i j E i E jD t t E q l c H t l c q H t l c qα α⎡ ⎤− ⎣ ⎦ (3.8)

We now define an algorithm for ranking a set of traces with respect to the trace of

interest.

3.3.2 Trace-ranking algorithm

Given a task of identifying top X closest classes of traces from a set of traces, T , closest

to trace t we resort to the following pseudo-algorithm:

1. Calculate distances between t and each trace in T ;

2. Order traces in T by their distance to trace t in ascending order;

3. Replace the vector of sorted traces with the vector of classes (e.g., defect IDs) to

which these traces map;

4. Keep the first occurrence (i.e., the closest trace) of each class in the vector and

remove the rest;

5. Calculate the ranking of classes taking into account ties using the “modified

competition ranking”20 approach;

6. Return a list of classes with ranking smaller than or equal to X .

20 The “modified competition ranking” assigns the same rank to items compared equal and leaves the gap
before the set of the items with the same rank. For example, if A is ranked ahead of B and C (considered
equal), which in turn are ranked ahead of D then the ranks will be performed a follows: A gets rank 1, B
and C gets rank 3, and D gets rank 4.

56

The “modified competition ranking” can be interpreted as a worst-case-scenario

approach. The ordering of traces of equal ranks is arbitrary; therefore we are looking at

the case when the most relevant trace will always reside at the bottom of the returned list.

To be conservative, we consider the outcome in which our method returns a trace in the

top X positions as being in the X -th position.

Now consider an example of the algorithm:

3.3.2.1 Traces ranking algorithm: example

Suppose that we have five traces it , = 1..5i . The traces related to four software defects

jd , = 1..4j as shown in Table 5.

Table 5. Example: Relation between traces and defects.
Defect Trace

1d 5t

2d 1 3,t t

3d 4t

4d 2t

Suppose that we calculate distances between traces using some measure of distance. The

distances between trace t and 1..5t and the defects' ranks obtained using these

hypothetical calculations are given in Table 6. The traces are ranked based on the

modified competition ranking schema. Trace 2t is the closest to t , hence 4d (to which 2t

is related) gets ranking number 1. Traces 1t and 4t have the same distance to t , therefore,

2d and 3d get the same rank. Based on the ranking schema algorithm we leave a gap

before the set of items with the same rank and assign rank 3 to both classes. Traces 3t and

5t also have the same distance to t ; however 3t should be ignored since it relates to the

already ranked defect 2d . This leads to assigning rank 4 to 1d . The resulting sets of top

X traces for different values of X are shown in Table 7.

57

Table 6. Example: Traces sorted by distance and ranked

it Distance between t and it Class (defect ID) of trace it Rank

2t 0 4d 1

1t 7 2d 3

4t 7 3d 3

3t 9 2d --

5t 9 1d 4

Table 7. Example: Top 1-4 defects

 Top X Set of defects in Top X
Top 1 4d
Top 2 4d
Top 3 4d , 2d , 3d
Top 4 4d , 2d , 3d , 1d

3.3.3 Traces ranking algorithm: efficiency

The number of operations C needed by the ranking algorithm is given by

1 2 3
Step1 Step2 Step3

4 5 6
Step4 Step5 Step6

| | ,
{ , , }1 3 4 5

1 2
Step1

= (| || |) (| | log | |) (| |)

(| |) (| |) (1)

(| || |) (| | log

T
c c c c

C c O M T c O T T c O T

c O T c O T c O

c O M T c O T

→∞

+ +

+ + +

+≈

�����	����
 ������	�����
 ���	��

���	��
 ���	��
 ��	�

�����	����

Step2

| |) ,T
������	�����

 (3.9)

where ic is a constant number of operations associated with i -th step, and | |⋅ represents

the number of elements in a given set. The coefficients 3c , 4c and 5c are of much smaller

order than 1c and hence terms corresponding to Steps 3, 4 and 5 do not contribute

significantly to C . Pair-wise distance calculation, using (3.6), requires (| |)O M

operations. Therefore, calculation of distances between traces (Step 1) requires

(| || |)O M T operations. Assuming that | |M remains constant, the number of operations

grows linearly with | |T . The average sorting algorithm, required by Step 2 (sorting of

58

traces by their distance to trace t), needs (| | log | |)O T T operations [2]. Usually,

1 2c c ; this implies that a user may expect to see linear relation between C and | |T

(even for large | |T), in spite of the loglinear complexity of the second term in (3.9).

The amount of storage needed for entropy-based fingerprints data (used by (3.6)) is

proportional to

 | || | | | = | | (| | 1),
a b

M T M M Tφ φ φ+ +
���	��
 ��	�

 (3.10)

where φ is the number of bytes needed to store a single fingerprint value. Term a is the

amount of storage needed for entropy-based fingerprints for all traces in T , and term b

is the amount of storage needed for the values of []{ }max (; ,);E k k kk
H t l c qα from (3.6).

Assuming that | |M remains constant, the data size grows linearly with | |T .

3.3.4 Entropies as fingerprints: drawback

The drawback associated with entropies comes from the fact that entropies cannot

differentiate dictionaries of events, since entropy formulas operate only with probabilities

of events. Therefore, entropies of strings “f1-f2-f3-f1” and “f4-f5-f6-f4” will be exactly

the same for any value of E , l , c , and q . The simplest solution is to do a pre-filtering of

traces in T in the spirit of the SIFT framework described in Section 3.1. For example,

one can filter out all the traces that do not contain “characters” (e.g., function names)

present in the trace of interest before using entropy-based fingerprints.

3.4 Validation case study
We hypothesize that predictive classification power will vary with change in E , l , c ,

and q . In order to study the classification power of [](; ,);EH t l c qα we will analyze

Cartesian products of the following sets of variables:

1. (, , ,)E S L R T∈ ,

59

2. (1, 2, ,7)l ∈ … ,

3. 5 4 1 2(0,10 ,10 , ,10 ,10)q − −∈ … ,

4. (, ,)c F FT FTD∈ .

Let us denote the complete set of parameters obtained by the Cartesian product as Λ .

Our software under study, called the Siemens suite, was first developed by Hutchins et al.

[10] at the Siemens Corporate Research. It was further augmented and publicly made

available at Software-artifact Infrastructure Repository [27, 26]. This software suite has

been used by a large number of studies on defect analysis in the last decade (see [11, 17]

for literature review).

The Siemens suite [10] contains seven programs. Each program has one original version

and a number of faulty versions. A faulty version is a variant of the original version by

one fault. A fault (changed source code from the original version) was seeded manually

by Hutchins et al. [10]. A fault can span over multiple lines of source code and multiple

functions. Each program comes with a collection of test cases, applicable to all faulty

versions and the original program. A fault can be identified if the output of a test case on

the original version differs from the output of the same test case on a faulty version of the

program.

In this study, we experimented with the largest program “Replace” of the Siemens suite.

It has 517 lines of code, 21 functions, 31 different faulty versions. There were 5542 test

cases shared across all the versions. Out of these 31 5542× test cases, 4266 (2.5%≈ of

the total number of test cases) caused a program failure when exposed to the faulty

program, i.e., were able to catch a defect. The remaining test cases were probably

unrelated to the 31 defects. The traces for failed test cases were collected using a tool

called Etrace [25]. The tool captures sequences of function calls for a particular software

60

execution such as the one shown in Figure 11. In other words, we collected 4266

function-call level failed traces for 31 faults (faulty versions) of the “Replace” program21.

The distribution of the number of traces mapped to a particular defect (version) is given

in Figure 12. Descriptive statistics of trace length are given in Table 8. The length ranges

between 11 and 101400 records per trace; average length is 623 records per trace.

Average dictionary sizes for various values of c are given in Figure 13. Note that as l

gets larger, the dictionary sizes for all c start to converge.

Table 8. Descriptive statistics of length of traces
Min. 1st Qu. Median Mean 3rd Qu. Max.

11 218 380 623.3 678 101400

Figure 12. Distribution of the number of traces per defect (version)

21 The “Replace” program had 32 faults, but the tool “Etrace” was unable to capture the traces of
segmentation fault in one of the faulty versions of the “Replace” program. This problem was reported also
by other researchers [11].

61

Figure 13. Dictionary size for various values of l and c

Each of the traces contains at least one shared function. Therefore, we skip the pre-

filtering step. Note that direct comparison with existing trace comparison techniques is

not possible since 1) the authors focus on identification of faulty functions [11, 17]

instead of identification of defect IDs and 2) the authors [11] analyze a complete set of

programs in the Siemens suite while we focus only on one program (Replace).

The case study is split into three parts: 1) analysis of the individual classification power

of each [](; ,);EH t l c qα in Section 3.4.1; 2) analysis of the classification power of the

complete set of entropies in Section 3.4.2.

3.4.1 Analysis of individual entropies

Analysis of the classification power of individual entropies is performed using 10-fold

cross-validation. The validation process is designed as follows:

1. Randomly partition 4266 traces into 10 bins

62

2. For each set of parameters , , ,E l c q

a. For each bin

i. Tag traces in a given bin as a validating set of data and traces in

the remaining nine bins as a training set

ii. For each trace t in the validating set calculate the rank of t 's class

(defect ID) in the training set using the algorithm in Section 3.3.222

with (3.8) as the measure of distance and with the set of parameters

, , ,E l c q

b. Average information about ranks of the “true” classes and store this data

for further analysis

Our findings show that the best results are obtained for H with (, ,)E L R T∈ , = 3l ,
5 4(10 ,10)q − −∈ , and =c FDT . Based on 10-fold cross validation, the entropies with

these parameters were able to correctly classify 21.6% 1.1%≈ ± 23 of Top 1 defects and

57.6% 1.5%≈ ± of Top 5 defects (see Table 9 and Figure 14). Based on the standard

deviation data in Table 9, all six entropies show robust results. However, the results

become slightly more volatile for high ranks (see Figure 15). Let us analyze these

findings in details.

22 Technically, in order to identify the true ranking one needs to tweak Step 6 of the algorithm and return a
vector of 2-tuples [class, rank].
23 95% confidence interval, calculated as (0.975, 9) / 10 standard deviationq± × , where (,)q p df
represents quantile function of the t-distribution, where p is the probability and df is the degrees of
freedom.

63

Figure 14. Interpolated average fractions of correctly classified traces in Top 5

(based on 10-fold cross validation) for =E L and =c FDT . for different values of l

and q .

64

Figure 15. Fraction of correctly classified traces in Top 5 for =E L , = 3l , 5= 10q − ,

and =c FDT . Solid line shows the average fraction of correctly classified traces in

10 folds; dotted line shows pointwise 95% confidence interval (95% CI) of the

average.

65

Table 9. Fraction of correctly classified traces in Top X for 1) [](; ,);EH t l c qα with (, ,)E L R T∈ , 5 4(10 ,10)q − −∈ , = 3l ,

and =c FDT , and 2) set of entropies Λ ; based on 10-fold cross validation. Average fraction of correctly classified

traces in 10 folds is denoted by “Avg.”; plus-minus 95% confidence interval denoted by “95% CI”.
 E = L E = R E = T Λ

Top X q = 10-4 q =10-5 q =10-4 q =10-5 q =10-4 q =10-5
 Avg. 95%CI Avg. 95%CI Avg. 95%CI Avg. 95%CI Avg. 95%CI Avg. 95%CI Avg. 95%CI

1 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2972 0.0151
2 0.3624 0.0180 0.3624 0.0180 0.3624 0.0180 0.3624 0.0180 0.3621 0.0180 0.3621 0.0180 0.4643 0.0189
3 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.5790 0.0181
4 0.5478 0.0164 0.5478 0.0164 0.5478 0.0164 0.5478 0.0164 0.5478 0.0165 0.5478 0.0165 0.6017 0.0165
5 0.5764 0.0149 0.5764 0.0149 0.5764 0.0149 0.5764 0.0149 0.5766 0.0151 0.5766 0.0151 0.6153 0.0170
6 0.5961 0.0174 0.5961 0.0174 0.5961 0.0174 0.5961 0.0174 0.5956 0.0177 0.5956 0.0177 0.6247 0.0179
7 0.6076 0.0174 0.6076 0.0174 0.6076 0.0174 0.6076 0.0174 0.6076 0.0173 0.6076 0.0173 0.6322 0.0171
8 0.6165 0.0166 0.6165 0.0166 0.6165 0.0166 0.6165 0.0166 0.6169 0.0165 0.6169 0.0165 0.6385 0.0170
9 0.6212 0.0162 0.6212 0.0162 0.6212 0.0162 0.6212 0.0162 0.6228 0.0158 0.6228 0.0158 0.6416 0.0171

10 0.6266 0.0167 0.6266 0.0167 0.6266 0.0167 0.6266 0.0167 0.6280 0.0163 0.6280 0.0162 0.6453 0.0173
11 0.6310 0.0172 0.6310 0.0172 0.6310 0.0172 0.6310 0.0172 0.6331 0.0167 0.6331 0.0168 0.6472 0.0164
12 0.6341 0.0177 0.6341 0.0177 0.6341 0.0177 0.6341 0.0177 0.6357 0.0175 0.6357 0.0175 0.6488 0.0164
13 0.6357 0.0170 0.6357 0.0170 0.6357 0.0170 0.6357 0.0170 0.6381 0.0169 0.6381 0.0170 0.6495 0.0165
14 0.6383 0.0173 0.6383 0.0173 0.6383 0.0173 0.6383 0.0173 0.6406 0.0170 0.6406 0.0169 0.6505 0.0161
15 0.6416 0.0164 0.6416 0.0164 0.6420 0.0162 0.6416 0.0164 0.6432 0.0162 0.6432 0.0162 0.6512 0.0160
16 0.6441 0.0167 0.6441 0.0167 0.6441 0.0167 0.6441 0.0167 0.6453 0.0166 0.6453 0.0166 0.6517 0.0159
17 0.6463 0.0157 0.6465 0.0157 0.6463 0.0157 0.6465 0.0157 0.6474 0.0156 0.6477 0.0155 0.6528 0.0157
18 0.6495 0.0147 0.6498 0.0146 0.6495 0.0147 0.6498 0.0146 0.6509 0.0144 0.6512 0.0144 0.6552 0.0152
19 0.6563 0.0150 0.6566 0.0149 0.6563 0.0150 0.6566 0.0149 0.6577 0.0147 0.6580 0.0147 0.6580 0.0149
20 0.6641 0.0163 0.6641 0.0163 0.6641 0.0163 0.6641 0.0163 0.6655 0.0161 0.6655 0.0160 0.6636 0.0161
21 0.6863 0.0142 0.6863 0.0142 0.6863 0.0142 0.6863 0.0142 0.6873 0.0141 0.6873 0.0142 0.6730 0.0167
22 0.7070 0.0106 0.7070 0.0106 0.7070 0.0106 0.7070 0.0106 0.7079 0.0104 0.7079 0.0104 0.7004 0.0128
23 0.7342 0.0117 0.7342 0.0117 0.7339 0.0117 0.7339 0.0117 0.7342 0.0114 0.7342 0.0112 0.7225 0.0138
24 0.7623 0.0092 0.7623 0.0092 0.7623 0.0092 0.7623 0.0092 0.7628 0.0089 0.7628 0.0088 0.7482 0.0173
25 0.7853 0.0076 0.7853 0.0076 0.7855 0.0074 0.7855 0.0074 0.7865 0.0072 0.7865 0.0072 0.7771 0.0121
26 0.8345 0.0082 0.8345 0.0082 0.8347 0.0077 0.8347 0.0077 0.8352 0.0082 0.8352 0.0082 0.8190 0.0091
27 0.8769 0.0097 0.8769 0.0097 0.8772 0.0097 0.8772 0.0097 0.8776 0.0097 0.8776 0.0097 0.8687 0.0088
28 0.9119 0.0082 0.9119 0.0082 0.9119 0.0082 0.9119 0.0082 0.9142 0.0083 0.9142 0.0083 0.9243 0.0094
29 0.9538 0.0054 0.9538 0.0054 0.9538 0.0054 0.9538 0.0054 0.9550 0.0054 0.9550 0.0059 0.9655 0.0042
30 0.9878 0.0027 0.9878 0.0027 0.9878 0.0027 0.9878 0.0027 0.9887 0.0027 0.9887 0.0027 0.9977 0.0016
31 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

66

The l -words with = 3l provide the best results based on the fraction of correctly

classified traces in Top 5 (see Figure 16), suggesting that chains of three events provide

optimal balance between the amount of information in a given l -word and the total

number of words. As l gets larger, the amount of data becomes insufficient to get a good

estimate of the probabilities.

Figure 16. Average fraction of correctly classified traces in Top 5 for various values

of l ; =E L , 5 0 2(0,10 ,10 ,10)q −∈ , =c FDT

Comparison of the average fraction of correctly classified traces in Top 5 for the three

values of c shows that FDT outperforms FD and F (see Table 10). However, the

difference between three values is marginal: for example 57.6% in Top 5 for =c FDT

vs. 56.2% for =c F . The fact that FDT outperforms the remaining character types is

expected, since FDT contains the largest amount of information. However, the addition

of information about type of trace point (entry or exit) does not significantly contribute to

the classification power of the algorithm. Note that even though more time is needed to

67

calculate the FDT -based entropies (since the dictionary of FDT s will be twice as large

as the dictionary of FD s for small l), the comparison time remains the same (since the

probabilities of l -words, P , map to a scalar value via the entropy function for all values

of c).

Table 10. Percent of correctly classified traces in Top X for [](; ,);EH t l c qα , =E L ,

= 3l , and 4 5= {10 ,10 }q − −

Top X =c F =c FD =c FDT
Top 1 21.7% 20.9% 21.6%
Top 2 37.2% 35.3% 36.2%
Top 3 49.5% 46.7% 47.6%
Top 4 54.0% 53.5% 54.8%
Top 5 56.2% 56.6% 57.6%

Our findings show that the extended entropies outperform the Shannon entropy24 for

< 1q and > 1q (see Figure 17). However, performance of extended entropies with < 1q

is significantly better than with > 1q , suggesting that rare events are more important than

frequent events for classification of defects in this dataset. The best results are obtained

for 4= 10q − and 5= 10q − .

It is interesting to note that classification performance is almost identical for H with

(, ,)E L R T∈ , l =3, 5 4(10 ,10)q − −∈ , and =c FDT . We believe that this fact can be

explained as follows: the key contribution to the ordering of similar traces (with similar

dictionaries) for entropies with 0q → is affected mainly by a function of probabilities of

traces' events. This function is independent of E and q and depends only on l and c ,

see Appendix 3.6 for details.

24 We do not explicitly mention entropy values on the figures. However, extended entropy values with

= 1q correspond to values of the Shannon entropy.

68

Figure 17. Average fraction of correctly classified traces in Top 5 for various values

of q ; =E L , (1,3,7)l ∈ , = c FDT

3.4.2 Analysis of the complete set of entropies

Analysis of the classification power for the complete set of entropies is performed using

10-fold cross-validation in a similar manner to the process described in Section 3.4.1.

However, instead of calculating distances for each H independently, we now calculate

distances between traces by utilizing values of H for all parameter sets in Λ

simultaneously. The validation process is designed as follows

1. Randomly partition 4266 traces into 10 bins

a. For each bin

i. Tag traces in a given bin as a validating set of data and traces in

the remaining nine bins as a training set;

69

ii. For each trace t in the validating set calculate the rank of t 's class

(defect ID) in the training set using the algorithm in Section 3.3.2

with equation and all25 the 4-tuples of parameters in Λ .

b. Average information about ranks of the “true” classes and store this data

for further analysis.

The results shown in Table 9 show the increase of predictive power: in the case of Top 1

the results improved from 21.6% (for individual entropies) to 29.7% (for all entropies

combined); for Top 5 from 57.6% to 61.5%. A significant increase in computational

effort (the number of entropy fingerprints increases from 1 to 504) does not yield

dramatic improvement: the 7% increase in power for predicting Top 5 matches comes at

a 503-fold increase in computational effort. We leave the resulting balance between cost

and benefit for each individual analyst to make.

3.5 Summary
In this work we analyze the applicability of entropies to predictive classification of traces

related to software defects. Our validating case study shows promising performance of

extended entropies with emphasis on rare events { }()5 410 ,10q − −∈ . The events are based

on triplets (3-words) of “characters” incorporating information about function name,

depth of function call, and type of probe point (=c FDT).

In the future, we are planning to increase the number of datasets under study, derive

additional measures of distance (e.g., using tree classification algorithms) and identify an

optimal set of combinations of parameters.

25 We had to exclude a subset of entropies with =E L , 2= 10q for all l and c from Λ . The values of

entropies obtained with these parameters are very large (100> 10), which leads to numeric instability of (6).
We keep just one of the various named = 1q entropies to avoid redundancy.

70

References
[1] J. Aczél and Z. Daróczy. On measures of information and their

characterizations. Academic Press, 1975.

[2] Thomas H. Cormen and Charles E. Leiserson and Ronald L. Rivest and Clifford
Stein. Introduction to Algorithms. The MIT Press, 3 edition, 2009.

[3] Domenico Cotroneo and Roberto Pietrantuono and Leonardo Mariani and
Fabrizio Pastore. Investigation of failure causes in workload-driven reliability
testing. Proc. of the 4th international wokshop on software quality assurance: in
conjunction with the 6th ESEC/FSE joint meeting, pages 78--85, 2007.

[4] Matt Davison and J. S. Shiner. Extended Entropies And Disorder. Advances in
Complex Systems (ACS), 8(01):125--158, 2005.

[5] Matthew Davison and Mechelle Sophia Gittens and David Richard Godwin and
Nazim H. Madhavji and Andriy Vladimir Miranskyy and Mark Francis Wilding.
Computer software test coverage analysis. 2006.

[6] W. Ebeling and G. Nicolis. Word frequency and entropy of symbolic sequences:
a dynamical perspective. Chaos, Solitons and Fractals, 2(6):635--650, 1992.

[7] Sebastian Elbaum and Satya Kanduri and Anneliese Andrews. Trace anomalies
as precursors of field failures: an empirical study. Empirical Softw. Eng.,
12(5):447--469, 2007.

[8] Sebastian Elbaum and Gregg Rothermel and Satya Kanduri and Alexey G.
Malishevsky. Selecting a Cost-Effective Test Case Prioritization Technique.
Software Quality Control, 12(3):185--210, 2004.

[9] Murali Haran and Alan Karr and Alessandro Orso and Adam Porter and Ashish
Sanil. Applying classification techniques to remotely-collected program
execution data. Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 146--155, 2005.

[10] Monica Hutchins and Herb Foster and Tarak Goradia and Thomas Ostrand.
Experiments of the effectiveness of dataflow- and controlflow-based test
adequacy criteria. Proceedings of the 16th International Conference on Software
Engineering, pages 191--200, 1994.

[11] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, pages 273--282,
2005.

[12] Peter T. Landsberg and Vlatko Vedral. Distributions and channel capacities in
generalized statistical mechanics. Physics Letters A, 247(3):211--217, 1998.

71

[13] Wenke Lee and Salvatore J. Stolfo and Philip K. Chan. Learning Patterns from
Unix Process Execution Traces for Intrusion Detection. In AAAI Workshop on AI
Approaches to Fraud Detection and Risk Management, :50--56, 1997.

[14] Leonardo Mariani and Mauro Pezzé. Dynamic Detection of COTS Component
Incompatibility. IEEE Software, 24(5):76--85, 2007.

[15] A. V. Miranskyy and M. S. Gittens and N. H. Madhavji and C. A. Taylor. Usage
of Long Execution Sequences for Test Case Prioritization. Supplemental
Proceedings of 18th IEEE International Symposium on Software Reliability
Engineering, 2007.

[16] A. V. Miranskyy and N. H. Madhavji and M. S. Gittens and M. Davison and M.
Wilding and D. Godwin and C. A. Taylor. SIFT: a scalable iterative-unfolding
technique for filtering execution traces. Proceedings of the 2008 conference of
the center for advanced studies on collaborative research, pages 274--288, 2008.

[17] S. S. Murtaza and M. Gittens and Z. Li and N. H. Madhavji. F007: Finding
Rediscovered Faults from the Field using Function-level Failed Traces of
Software in the Field. Proceedings of the 2010 conference of the center for
advanced studies on collaborative research, 2010, to appear.

[18] Andy Podgurski and David Leon and Patrick Francis and Wes Masri and Melinda
Minch and Jiayang Sun and Bin Wang. Automated support for classifying
software failure reports. Proceedings of the 25th International Conference on
Software Engineering, pages 465--475, 2003.

[19] Alfréd Rényi. Probability theory. North-Holland Pub. Co., 1970.

[20] Gregg Rothermel and Mary Jean Harrold and Jeffery Ostrin and Christie Hong.
An Empirical Study of the Effects of Minimization on the Fault Detection
Capabilities of Test Suites. Proceedings of the International Conference on
Software Maintenance, pages 34, 1998.

[21] Claude E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27:623--656, 1948.

[22] Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics.
Journal of Statistical Physics, 52(1):479--487, 1988.

[23] Susana Vinga and Jonas S Almeida. Rényi continuous entropy of DNA
sequences. Journal of Theoretical Biology, 231(3):377--388, 2004.

[24] Chun Yuan and Ni Lao and Ji-Rong Wen and Jiwei Li and Zheng Zhang and Yi-
Min Wang and Wei-Ying Ma. Automated known problem diagnosis with event
traces. Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006, pages 375--388, 2006.

[25] Etrace. http://ndevilla.free.fr/etrace/, Accessed: November 15, 2010.

72

[26] Siemens Suite. http://pleuma.cc.gatech.edu /aristotle/Tools/subjects/, Accessed:
November 15, 2010.

[27] Hyunsook Do and Sebastian Elbaum and Gregg Rothermel. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact. Empirical Software Engineering, 10(4):405--435, 2005.

[28] Hamou-Lhadj, Abdelwahab. Measuring the Complexity of Traces Using
Shannon Entropy. Proceedings of the Fifth International Conference on
Information Technology: New Generations, pages 489--494, 2008.

[29] Johan Moe and David A. Carr. Using execution trace data to improve distributed
systems. Software: Practice and Experience, 32(9):889--906, 2002.

[30] R. Y. Rubinstein. Optimization of computer simulation models with rare events.
European Journal of Operational Research, 99:89--112, 1997.

3.6 Appendix: Approximation of Equation (3.8)

We have observed that classification power of the [](; ,);EH t l c qα is the highest when

0q → . In order to explain this phenomenon let us expand [](; ,);EH t l c qα using a

Taylor series:

[]

[]

[] ()

0 2
2

0 2
22

0 2

11(; ,); 1 (),=

(; ,); () log () (),log= log (2)

(; ,); 1 1 (),=

q
i i

L i
i i i

q
i

R i i i
i e

q

T i i i

A nH t l c q q O q
n n n

AH t l c q n q n O q
n

H t l c q n q A n O q

α

α

α

→

→

→

⎛ ⎞−
− + + +⎜ ⎟

⎝ ⎠
⎡ ⎤

+ + +⎢ ⎥
⎣ ⎦

− + + − +

 (3.11)

where
=1

= log ()
ni

i e k
k

A p∑ . By plugging (3.11) into (3.8) and assuming that for similar

traces i jn n n≈ ≈ , (3.8) becomes:

73

2(, ; , , ,) ,

(, ; , , ,) ,
log (2)

(, ; , , ,) ,

i j i j

i j i j
e

i j i j

qD t t L q l c A A
n

qD t t R q l c A A
n

D t t T q l c q A A

≈ −

≈ −

≈ −

 (3.12)

Equation (3.12) can be interpreted as follows. In the case when 0q → and dictionaries of

a pair of traces are similar, the key contribution to the measure of distance is coming

from the
=1

log ()
ni

e k
k

p∑ term (which depends only on l and c) making the rest of the

variables irrelevant (q and n become parts of scaling factors). This can be highlighted

by solving a system of equations to identify conditions that generate the same ordering

for three traces , ,i j kt t t for all extended entropies (using approximations from (3.12)):

2 2

.log (2) log (2)

i j i k

i j i k
i j i ke e

i j i k

q qA A A A
n n

q qA A A A A A A An n

q A A q A A

⎧ − −⎪
⎪
⎪⎪ − − ⇒ − −⎨
⎪

− −⎪
⎪
⎪⎩

 (3.13)

In information theory log ()e kp is the “surprise” in receiving the bit k which occurs with

probability pk. Thus
1

log ()in
k e kk

p p
=∑ is the expected surprise or information (Shannon

entropy). What about just
1
log ()in

e kk
p

=∑ ? It scales with the total number of bits needed

to specify each symbol. This is related to the problem of simulating processes in the

presence of rare events, see [30] for details.

74

Chapter 4

4 Metrics of Risk Associated with Defects Rediscovery
Software defects rediscovered by a large number of customers affect various stakeholders

and may: 1) hint at gaps in a software manufacturer’s Quality Assurance (QA) processes,

2) lead to an overload of a software manufacturer’s support and maintenance teams, and

3) consume customers’ resources, leading to a loss of reputation and a decrease in sales.

Quantifying risks associated with the rediscovery of defects can help all of these

stakeholders. In this chapter we present a set of metrics needed to quantify the risks. The

metrics are designed to help: 1) the QA team to assess their processes; 2) the support and

maintenance teams to allocate their resources; and 3) the customers to assess the risks

associated with the use of the software product. The paper includes a validation case

study showing application of these risk metrics to industrial data. To calculate the metrics

we use mathematical instruments like the heavy-tailed Kappa distribution and the G/M/k

queuing model.

4.1 Introduction
During in-house testing of a software product, the Quality Assurance (QA) team attempts

to remove defects injected during software development. It is impossible to remove all

defects before shipping the software product. As customers use the product, they discover

defects that “escaped” the QA team. Upon defect reporting the software provider’s

maintenance team prepares and makes available a fix. A discovered defect is sometimes

rediscovered by another customer. This rediscovery could occur because another

customer finds the defect before the fix is available or has not been installed. Defects

relating to rarely used software features will be rediscovered infrequently. However,

defects relating to popular and extensively used features may affect a significant

percentage of customers.

75

Frequently rediscovered defects (affecting many customers) can cause an avalanche of

requests, defined as a large number of requests for fix patches from multiple customers

within a short timeframe. Because different software versions are run on different

software and hardware platforms, each customer may require a different fix patch.

Avalanches have significant consequences. Support personnel will experience a heavy

volume of support requests. The maintenance team will need to prepare a large number of

special builds, while customers await the official fix. On the other side, the customers’

system administrators will need to spend time assessing the fix’s risk and distributing it to

their systems. An inordinate number of defects may diminish the provider’s reputation

and result in decreased software sales.

Frequent rediscovery of a defect suggests that one or more common functionalities were

not properly tested. Analysis of such defects is important to identify gaps in QA

processes to prevent the future escape of similar defects.

Defect risk analysis is therefore important for software manufacturers and customers. We

propose a set of quantitative risk metrics which can be used to assist:

• The support team’s assessment of the potential number of repeated calls on the

same subject, helping in personnel allocation;

• The maintenance team’s estimation of the potential number of repeated special

builds, assisting in resource allocation of team members;

• The QA team’s assessment of trends in frequently rediscovered defects on

release-to-release basis. If the trend shows increased defect rediscovery, QA

processes must be improved. The resulting strategy to close testing process gaps

can be derived by root cause analysis of frequently rediscovered defects;

• Customers assessment of risks associated with software product usage.

76

We present a validation case study showing applicability of these metrics to an industrial

dataset of defects rediscovery. In order to model the data we derive a compound Kappa

distribution and use the G/M/k queueing model.

Section 4.2 of this chapter reviews relevant work. Section 4.3 provides formal definitions

and applications of the metrics. Section 4.4 provides a validation case study, showing

application of the metrics to the industrial data. Finally, Section 4.5 concludes the

chapter.

4.2 Related Research
The chapter’s main contribution is a set of metrics for assessing defect rediscovery risks.

The following metrics have been formulated by other authors: the number of

rediscoveries per defect [1], the time interval between first and last rediscovery of a given

defect[1] and the probability that a customer will observe failure in a given timeframe

[2]. Our metrics are complementary to these three.

Our metrics can help in resource allocation of service and maintenance teams; these

metrics rely on information about arrival of defect rediscoveries. Other authors have used

counting processes [3] and regression models to help estimate staffing needs. However,

the authors do not assess risks associated with under-staffing; hence our work

complements theirs.

We use a G/M/k queue analysis to estimate staffing needs for delivery of special builds

fixing rediscoveries for customers. Queuing theory tools have not yet been applied to this

problem, although the load on a k-member service team delivering fixes for initial

rediscovery of defects was modeled in [4] using k M/M/1 processes. Work has also been

done on modeling the initial discovery repair time distribution [5] and predicting defect

repair time based on attributes of past defect reports [6].

The second contribution of this paper is the introduction of a compound Kappa

distribution, related to the family of heavy-tailed distributions, to model the data. While

77

previous work has observed that, depending on the dataset, distribution of defect

rediscoveries is either thin-tailed (exponentially bounded) [7] or heavy-tailed [8],[9],

many processes in software engineering are governed by heavy-tailed distributions [10].

Based on these observations, modeling the rediscovery distribution was performed using

the empirical [8], geometric [7], lognormal [9], and Pareto [9] distributions. We found

that none of these parametric models provided an adequate fit to our data. Therefore, we

introduced a more flexible distribution, namely, the compound Kappa for the number of

rediscoveries that also allows for tail-event information not available in the empirical

distribution.

4.3 Metrics of Risk
Motivation for metric applications is described in Section 4.3.1 with their formal

definitions deferred until Section 4.3.2.

4.3.1 Metrics Application

Metrics used by Support and Maintenance Teams, Quality Assurance Team and

customers are given in Sections 4.3.1.1, 4.3.1.2 and 4.3.1.3, respectively.

4.3.1.1 Support and Maintenance Teams

Defect discovery related to common and frequently executed functionalities triggers a

large number of support requests shortly after its initial discovery. This can be explained

as follows:

Proactive requests for software fix: The software manufacturer publishes information

about newly discovered defects on a regular basis. In turn, a customer’s software

administrators analyze newly published defects shortly after publication and use their

expertise to assess the defect rediscovery probability and the severity of implications

associated with its rediscovery. If the administrators decide the risks warrant it, they will

78

contact the manufacturer’s support desk requesting a special software build26

incorporating a defect fix. This is a preventative measure against encountering this

problem in the future.

Reactive requests for software fix: A customer could encounter a defect recently exposed

by another customer (this is common for “regression” defects which break existing

functionality) so requesting a special build from the support desk to prevent defect

reencounter.

In both cases, the support desk will, after an initial assessment, relay this special build

compiling and testing request to the manufacturer’s maintenance team. Large numbers of

customers classifying a defect as “potentially discoverable”, may trigger an avalanche of

special build requests. These requests can overload the maintenance and support

personnel. We now analyze the cause of the overload and the actions needed to prevent it.

Maintenance Team: Customers may use different versions of the product on multiple

platforms. Even though the source code repairing a given defect is the same, special

builds will have to be tailored individually for each customer. Building and testing a

special build of a large software product can take several days, consuming human and

hardware resources. Therefore, the maintenance team is interested in knowing the

probability of the increase in the number of requests for special builds above a certain

threshold27 in a certain timeframe as well as the total number of the requests above the

threshold. We call the number of requests for special builds above a certain threshold a

“spike”. In addition to the probability of a spike, the maintenance team is also interested

in the conditional expectation of the spike’s size given its occurrence. Also of interest is

the probability that the number of requests for special builds in a given timeframe will

not exceed a predetermined threshold. By leveraging this data, the management of the

26 We assume that the standard vehicle for delivery of fixes is through cumulative fix packs.
27 In addition to routine requests for special builds for defects with small numbers of rediscoveries.

79

maintenance team can allocate personnel (based on the expected number of special builds

and the average waiting time to deliver the builds) so that they can be transferred to the

“special build team” on an as-needed basis, decreasing delivery time to customer.

Support Team: Once contacted by a customer with a proactive request for a special

build (fixing defect of interest), a support analyst must verify if the defect can be

rediscovered by the customer28. If the request is reactive, then the analyst has to verify

that the problem is caused by this particular defect and not another one with similar

symptoms. Knowing the probability and potential size of spikes in the number of requests

(as well as the probability of not exceeding a certain number of calls in a given

timeframe) can support management’s personnel allocation, speeding diagnostics thus

leading to faster transfers to the maintenance team and a decrease in the overall

turnaround time. The end result is cost savings and higher customer satisfaction.

4.3.1.2 Quality Assurance Team

Maintenance and Support teams can use information about frequently rediscovered

defects for tactical planning. The QA team can use this data for strategic planning to

identify trends in software quality on a release-to-release basis. Frequently rediscovered

defects affecting a significant percentage of the customer base relates to frequently

executed common functionality. The presence of such defects suggests the QA team’s

inability to reproduce customer workloads in-house or its failure to execute existing test-

cases covering this functionality [11]. In order to compare releases of the product, an

analyst needs to find out how many defects were rediscovered at least x times for a given

release29. The numbers of defects with high number of rediscoveries should decrease

28 For example, even though the customer is using functionality affected by a given defect, the problem
could be specific to a hardware platform not used by this customer.
29 If the customer base of a software product does not change significantly from release to release, then the
number of defects with a high number of rediscoveries can be directly compared. If this assumption fails
then it may be beneficial to normalize the number of defects by the size of customer base and/or product
usage.

80

from release to release. An increasing number of defects may imply a deterioration of

QA processes. The QA team should analyze root causes of defects to find the actions

needed to close these gaps.

4.3.1.3 Customers

Information about defect rediscovery interests customers, especially for mission-critical

applications. It is known that a customer’s perceived quality [12],[13],[11] is correlated

with the quantity and severity of failures that the customer encounter. Therefore,

comparison of the number of defects affecting a significant percentage of the customer

base for various products can be used as one of the measures needed to select the “safest”

product. In the next section we discuss some techniques required to answer these

questions.

4.3.2 Formulation of Metrics

Based on the discussion in the previous section, stakeholders are interested in the

following data:

1. The number of defects rediscovered more than certain number of times in a given

timeframe;

2. The number of defects affecting a certain percentage of the customer base in a

given timeframe;

3. The total number of rediscoveries for defects rediscovered more than certain

number of times in a given timeframe;

4. The probability of spikes in the number of requests in a given timeframe;

5. The probability that the number of requests for special builds in a given

timeframe will not exceed a certain threshold;

6. The worst-case scenario for the total number of rediscoveries;

81

7. The expected waiting time of customers.

To calculate these variables we build a formal probabilistic model of defect rediscoveries.

Suppose that N field defects are discovered independently up to time t with the i-th defect

rediscovered (,)i iD D s t≡ times in the interval [s, t), s<t. For the sake of brevity we will

use iD and (,)iD s t interchangeably. The number of rediscoveries R(s,t) between times s

and t is given by

()

1

(,) (,).
N t

i
i

R s t D s t
=

≡ ∑ (4.1)

Formally, a spike is defined as the situation when the total number of rediscoveries in a

given timeframe [s,t] is greater than r:

 (,) .R s t r> (4.2)

The probability that the i-th defect will be rediscovered exactly d times in the interval

[,)s t is given by () ().i ip d P D d≡ = We assume that the probability distribution of the

number of rediscoveries is the same for all defects (i.e., that the iD are identically

distributed random variables).

Assuming that the number of rediscoveries lies in the range [0,∞), the probability that the

number of rediscoveries of the i-th defect will be less than or equal to d is given by

cumulative distribution function (cdf)

0

() () (),
i

d

i D d i i
j

F d E I P D d p j≤
=

⎡ ⎤= = ≤ =⎣ ⎦ ∑ (4.3)

where AI is an indicator variable such that

82

1, if holds

;
0, otherwiseA

A
I ⎧

= ⎨
⎩

 (4.4)

and the expected value of A is equal to probability of A:

 [] ().AE I P A= (4.5)

The probability that the number of rediscoveries of the i-th defect will be greater than d is

given by the decumulative distribution function:

1

() () () 1 ().
ii D d i i i

j d
F d E I P D d p j F d

∞

>
= +

⎡ ⎤= = > = = −⎣ ⎦ ∑� (4.6)

The quantile function, (inverse of the cdf) 1 ()iF α− is used to determine the α quantile of a

given distribution.

The expected total number of rediscoveries for the i-th defect with rediscoveries ranging

between l and u is given by

 (,) ().
i

u

i i l D u i
j l

R l u E D I jp j≤ ≤
=

⎡ ⎤= =⎣ ⎦ ∑ (4.7)

Note that Ri(1,∞) calculates expected number of rediscoveries of the i-th defect. Armed

with these instruments, we can estimate the metrics listed above.

M1: Expected number of defects rediscovered more than certain number of times

The expected number of defects rediscovered more than d times is given by

 1
1 1 1

() ().
i i

N N N

D d D d i
i i i

M d E I E I F d
= = =

> >
⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∑ ∑ � (4.8)

If all pi are identically distributed, then (4.8) simplifies to

83

i.d.

1 1
1

() () () ().
N

i
i

M d F d NF d NF d
=

= = =∑ � � � (4.9)

Note that we suppress indices to ease notation.

M2: Expected number of defects affecting certain percentage of the customer base

This metric is similar to M1. If we denote the total number of customers by C and assume

that every customer rediscovers a given defect only once, then the relation between the

percentage of the customer base x and number of rediscoveries d is given by

 /100 ,d xC≈ ⎢ ⎥⎣ ⎦� (4.10)

where ⎢ ⎥⎣ ⎦i is the floor function mapping to the next smallest integer. M2 is calculated as

i.d.

2 1
1

() () () (),
N

i
i

M d F d NF d NF d
=

= = =∑� � � � (4.11)

M3: Expected total number of rediscoveries for defects with number of rediscoveries

above certain threshold in a given timeframe

The expected total number of rediscoveries for a given spike is calculated as

3

1 1

i.d.

1
1

()

(,) (,) (,),

i i

N N

i d D i d D
i i

N

i
i

M d E D I E D I

R d NR d NR d

≤ <∞ ≤ <∞
= =

=

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎣ ⎦

= ∞ = ∞ = ∞

∑ ∑

∑
 (4.12)

where d is the smallest number of rediscoveries of a particular defect.

M4: Probability of spikes in the number of requests in a given timeframe

This can be rephrased as probability that the total number of rediscoveries will exceed a

certain threshold L. The calculation of this value involves two steps:

84

1) Find d to satisfy the equation:

i.d.

1 1 1
1 1 1

(1,) (1,) (1,),
i i

N N N

i D d i D d i
i i i

L E D I E D I R d NR d NR d≤ ≤ ≤ ≤
= = =

⎡ ⎤ ⎡ ⎤= = = = =⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∑ ∑ (4.13)

Since d is discrete, we will not always be able to find an integer value of d to

satisfy this equality, so we look for the smallest integer d which satisfies:

i.d.

1
1

(1,) (1,) (1,),
N

i
i

L R d NR d NR d
=

≤ = =∑ (4.14)

2) After identifying d, the probability that the total number of rediscoveries will
exceed L is given by

 4 () () 1 ().M d F d F d= = −� (4.15)

M5: Probability that the total number of rediscoveries will not exceed certain

threshold

This metric is complementary to M4 and is calculated in a similar manner. Given the

number of rediscoveries d from (4.14) we calculate M5 as

 5 4() 1 () ().M d M d F d= − = (4.16)

M6: Estimate of the worst case scenario for the total number of rediscoveries

This metric provides a threshold which the total number of rediscoveries will not exceed

for a given probability level. The metric provides the worst case scenario of the total

number of rediscoveries. For example, if the value of M6(0.99) is equal to y, then it will

tell us that in 99 cases out of 100 the total number of rediscoveries will not exceed y30.

30 This is similar to “Value At Risk” measure used in finance

85

In order to obtain this value we need to identify number of rediscoveries for a given

probability level α using 1()iF α−⎢ ⎥⎣ ⎦ . The threshold value of rediscoveries is then

calculated using

1 16 1 (1 (
1 1

i.d.
1 1

1 1
1

1

(

1, (1, (

1, (.

i i i i

N N

i iD F D F
i i

N

i i
i

M E D I E D I

R F NR F

NR F

α α
α

α α

α

− −⎢ ⎥ ⎢ ⎥≤ ≤) ≤ ≤)⎣ ⎦ ⎣ ⎦= =

− −

=

−

⎡ ⎤ ⎡ ⎤) = =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥=) =)⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤⎢ ⎥=)⎣ ⎦⎣ ⎦

∑ ∑

∑ (4.17)

M7: Expected waiting time of customers being serviced

This metric is calculated using queuing tools [14]. M7 depends on the distributions

governing service time, requests’ inter-arrival time and number of personnel allocated to

handle these requests. The metric’s formula will depend on the form of distributions

governing the queue.

Let us look at the application of the metrics. Metrics M1 and M2 can be used by QA and

customers to calculate the number of defects injected in common functionality (M1) and

identify defects affecting a certain fraction of the customer base (M2) as discussed in

Sections 4.3.1.2 and 4.3.1.3.

Metric M3 helps to estimate the total number of rediscoveries for frequently discovered

defects and the potential contribution of the frequently rediscovered defects to the overall

load of support and maintenance teams.

Metrics M4-7 can be used to address issues described in Section 4.3.1.1 and help in

resource allocation of the service and maintenance teams.

Metrics M4-6 may also be used for resource allocation as follows: A manager responsible

for resource allocation knows the amount of available personnel, denoted by A, and,

86

based on historical data, the average amount of service (special build) requests that

support (maintenance) person can process per unit time, denoted by μ.

A simple estimate31 of the overall amount of service (special build) requests, denoted by

Q, that can be processed by personnel in a given timeframe T is given by

 .Q A Tμ= (4.18)

The manager can then use M4(Q) or M5(Q) to get an estimate of the probability that the

support of maintenance team will be able to handle the volume of requests Q.

The manager can examine the resource allocation task from the opposite perspective:

instead of calculating the probability of handling requests by employees, she can

calculate the number of service or special build requests that will not exceed M6(α) at

confidence level α. We can obtain the amount of personnel A needed to handle this

workload by inverting (4.18):

 6 (/ ().A M Tα μ=) (4.19)

Note that stationary processes should be used if metrics M4-7 are used for forecast-related

management decisions. In order to calculate the metrics M1-6 we also need an estimate of

the total number of defects. There exists a variety of methods that can be used to estimate

this value, see [15] for review of the methods. Detailed discussion of these techniques is

beyond the scope of this paper.

4.4 Case Study
In this case study we use defect discovery data for a set of components of four

consecutive releases of a large scale enterprise software. To preserve data confidentiality,

31 This estimate does not account for request inter-arrival times. A better estimate can be obtained using
metric M7

87

the dataset is scaled and rounded. Also, we assume that the customer base size remains

constant across all four releases.

Figure 18 depicts N(t), the cumulative number of defects encountered up to t years after

the product has shipped. The total number of rediscoveries from time 0 (general

availability (GA) date of the product to be shipped to the field) to time t, R(0,t), is shown

in Figure 19. The age of the releases in the field varies from 5 years for v.1 to 2 years for

v.4 because v.4 was released about three years after v.1

0 1 2 3 4 5

0
50

0
10

00
15

00
20

00

t (years)

N
(t)

v.1
v.2
v.3
v.4

Figure 18. N(t): total number of defects discovered up to time t.

88

0 1 2 3 4 5

0
20

00
40

00
60

00
80

00

t (years)

R
(0

, t
)

v.1
v.2
v.3
v.4

Figure 19. R(0,t): total number of rediscoveries up to time t.

Metrics M1-6 rely on the distribution of the number of rediscoveries per defect Di (Section

4.3.2). In the same section, to simplify formulas for M1-6, we assumed that Di are

identically distributed so must specify the distribution of Di. Without loss of generality,

we split the Di data for every release into yearly time intervals (, 1)iD t t + , where t = 0 … 4

(if the data is present for a given release).

This split is reasonable in practice. Resource planning (metrics M3-6) is performed for a

fairly short future time interval; one year or less being common planning horizons.

Metrics M1-2 focus on measuring general quality of the product and would benefit from

the information about rediscoveries over the complete lifecycle of a product in the field.

However, it is also critical to identify issues with QA processes early, so that actions can

be taken to improve QA processes of releases under development. Since the lifespan of

an enterprise software product can often reach a decade or more, it would not be practical

to wait such a long time to obtain information.

89

4.4.1 Finding a Suitable Distribution

In order to find an analytic distribution that would be able to fit each of the yearly

datasets, we use an L-moments ratio diagram [16]. This diagram is a goodness-of-fit tool

to determine the probability distribution of the data. The L-moments are chosen since

they are less biased and are less sensitive to outliers than ordinary moments [17],[16].

The diagram is shown in Figure 20 and the hollow circles denote each of the yearly

datasets of Di. The diagram shows the fits of the following widely used distributions [18]:

Exponential (EXP), Normal (NOR), Gamma (GUM), Rayleigh (RAY), Uniform (UNI),

Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Normal

(GNO), Generalized Pareto (GPA), generalization of the Power Law, Pearson Type III

(PE3), and Kappa (KAP). The diagram shows that the data is best approximated by a

Kappa distribution as all data lie in the Kappa applicability space32, with the Pearson

Type III distribution the second best choice (data points lie around PE3 L-moments ratio

line).

The analysis procedure is adequately shown even if we limit the scope of the analysis to

the four datasets of (1, 2)iD showing rediscovery data for the second year of each release.

We note that due to heavy tails, the exponential distribution does not provide an adequate

fit to the data. Based on the data from the L-moments ratio diagram, we fit the data using

the two best performers: Pearson Type III and Kappa distributions. The QQ-plots

showing goodness of fit are shown, accordingly, in Figure 21 and Figure 22. Based on

Akaike’s information criterion (AIC) [19] the Kappa distribution provides a better fit33

than Pearson Type III for three datasets out of four (see Table 11).

32 The Kappa distribution’s applicability space is a plane bounded by GLO and “Theoretical limit” L-
moments ratio lines [16] on Figure 20.
33 The lower the value of AIC – the better the fit.

90

Table 11. AIC
Distribution v.1 v.2 v.3 v.4

PE3 12397 4481 2069 4797
KAP 11277 4309 2390 4304
Compound KAP 9392 4283 2934 4238

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L-SKEW

L-
K

U
R

TO
S

IS
Theoretical limits
GEV
GLO
GNO
GPA
PE3
EXP
NOR
GUM
RAY
UNI

Figure 20. L-moments ratio diagram of Di for all releases per year (years 1 – 5). The

hollow circles denote each of the yearly datasets of Di. The diagram shows the fits of

the following distributions: Exponential (EXP), Normal (NOR), Gamma (GUM),

Rayleigh (RAY), Uniform (UNI), Generalized Extreme Value (GEV), Generalized

Logistic (GLO), Generalized Normal (GNO), Generalized Pareto (GPA),

generalization of the Power Law, Pearson Type III (PE3), and Kappa (KAP). Kappa

distribution applicability space is a plane bounded by GLO distribution line above

and the “Theoretical limits” line below and is not shown on the legend. Based on

this figure, Kappa distirbution is the only one that is applicable to modeling each of

the datasets.

91

0 20 40 60 80 100

0
20

40
60

80
10

0

Empirical Quantile

Th
eo

re
tic

al
 Q

ua
nt

ile
 (P

ea
rs

on
 T

yp
e

3
D

is
trb

ut
io

n)

v.1
v.2
v.3
v.4

Figure 21. QQ plot of the empirical vs. PE3 distributions’ quantiles.

0 20 40 60 80 100

0
20

40
60

80
10

0

Empirical Quantile

Th
eo

re
tic

al
 Q

ua
nt

ile
 (K

ap
pa

 D
is

trb
ut

io
n)

v.1
v.2
v.3
v.4

Figure 22. QQ plot of the empirical vs. KAP distributions’ quantiles.

92

However, Figure 22 suggests that even the Kappa distribution isn’t sufficiently flexible to

fit both left and right tails of the empirical distribution. In order to overcome this obstacle

we resort to a compound Kappa distribution.

The Kappa distribution [16] is a flexible 4-parameter distribution suited for fitting heavy-

tail data. This distribution contains the Exponential, Weibull, Generalized Extreme

Value, and Generalize Pareto distributions as special cases. Its cdf is:

1/(() 1 1 .

h
xF x h

κκ ξ
α

1/
⎧ ⎫−)⎪ ⎪⎡ ⎤= − −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

 (4.20)

The parameters ξ , α, and κ and h describe location, scale, and shape, respectively. The

associate quantile function is:

 1 1(1 .
huF u

h

κ
αξ
κ

−
⎡ ⎤⎛ ⎞−

) = + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (4.21)

The first Kappa distribution with cdf Fa, fits the left tail of the dataset (in the range [0, ρ])

and the second with cdf Fb fits the right tail in the range (ρ, ∞). We select these partition

points, ρ, for each of the four datasets by minimizing the sum of squares of the residuals

between fitted and empirical data. For other techniques see [19]. Table 12 presents values

of ρ. Fa and Fb are fitted independently; the resulting cumulative distribution function

looks like:

[]

1

1 2

(),
() ,

() () ,
a

c
a b

ww F d D
F d

w w F w F d D
ρ

ρ ρ
≤⎧⎪= ⎨ + >⎪⎩

 (4.22)

where w, w1, w2 are the normalization constants

93

[] []

1

2 1
1 1

1 2 1 2

 ecdf(
1 ,

(((,a b a

w
w w

w w F w F w F w

ρ

ρ ρ− −

≡),
= −

=) + ∞) =) +

 (4.23)

where ecdf is the empirical distribution function. We use the Weibull form [20] of the

empirical distribution function: given a vector of observations y sorted in ascending

order, with sample size n, the unbiased non-exceedance probability of the i-th observation

is given by:

 ecdf () / (1).i i n= + (4.24)

The quantile function of the compound distribution can be obtained by inverting (4.22):

 1 1 ()(1 ,
wh

c
z uF u
h

ωκ

ω
ω

ω ω

αξ
κ

−
⎡ ⎤⎛ ⎞−⎢ ⎥) = + − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (4.25)

where

[]

1 1

1 2 1

/ (), (
() .

() / , (
a

a a

u ww u ww F
z u

u ww F ww u ww F
ρ

ρ ρ
≤)⎧⎪= ⎨ − >)⎪⎩

The parameters’ lower index, ω, specifies their affiliation with the first (a) or second (b)

Kappa distributions; aω = if 1 (au ww F ρ≤) and bω = otherwise.

Table 12. Values of variables
Variable v.1 v.2 v.3 v.4

ρ 15 15 8 10
M1(10) 65.52 26.27 6.02 20.64
R(1,2)/N(2) 2.24 1.76 1.02 1.53

The goodness of fit of the compound distribution is shown on QQ-plot in Figure 23. The

QQ-plot suggests that the compound distribution provides a good fit to the underlying

data. In addition, based on the AIC data given in Table 11, the compound Kappa

distribution provides better fit than the Kappa distribution for three datasets out of four.

94

Unfortunately, we cannot use the Kolmogorov-Smirnov or chi-squared tests due to the

large number of tied observations, as Figure 24 shows.

0 20 40 60 80 100

0
20

40
60

80
10

0

Empirical Quantile

Th
eo

re
tic

al
 Q

ua
nt

ile
 (C

om
po

un
d

D
is

tri
bu

tio
n)

v.1
v.2
v.3
v.4

Figure 23. QQ plot of the empirical vs. Compound distributions’ quantiles.

All of the distributions above are fitted to the data using the method of L-moments [16].

We have chosen this technique over the classical method of moments due to a more

accurate estimate of the distribution’s right tail [16],[17]. Having established the

machinery for estimation of the metrics, we proceed to examples of the analysis and

usage of the metrics themselves.

95

-2 0 2 4 6

0
2

4
6

-ln(-ln(Empirical cdf)

-ln
(-

ln
(T

he
or

et
ic

al
 c

df
 (C

om
po

un
d

D
is

tri
bu

tio
n)

))

v.1
v.2
v.3
v.4

Figure 24. Plot of the empirical cdf vs. Compound Kappa distribution theoretic cdf.

4.4.2 Application of the Metrics

The application section is divided into two parts. Section 4.4.2.1 focuses on software

quality metrics, while Section 4.4.2.2 concentrates on resource allocation-related metrics.

4.4.2.1 Analysis of Software Quality

As discussed in Sections 4.3.1. and 4.3.2, metrics M1, defined by equation (4.9), and M2,

equation (4.11), can be used to identify potential issues with QA processes and to help

customers find the “safest” product. Figure 25 plots M1 against the number of

rediscoveries d. The plot shows that from v.1 to v.3 the number of defects rediscovered

more than d times decreased for all values of d. However, the value of the metric went up

for v.4:
.1 .2 .3 .4

1 1 1 1 .v v v vM M M M< < <

96

0 20 40 60 80 100

0
50

0
10

00
15

00

d

M
1

v.1
v.2
v.3
v.4

Figure 25. M1: expected number of defects rediscovered more than d times during

the 2nd year after GA date.

This ordering becomes especially obvious if we look at values of M1 for a specific

number of rediscoveries (for example, d=1034) for all releases (shown in Table 12).

This information suggests that the quality _ of QA processes went down in the last

release:

 (.1) (.2) (.4) (.3).v v v v< < <_ _ _ _ (4.26)

Before making this conclusion we should look at other quality attributes of the software.

The number of rediscoveries per defect: R(1,2) / N(2), given in Table 12; the ordering of

34 We pick this number arbitrarily; an analyst can pick this threshold value based on their expertise on
problematic levels of rediscoveries in their organization.

97

the total number of defects (Figure 18), and their rediscoveries (Figure 19) in the second

year concur our hypothesis (4.26).

Based on this conclusion, an analyst needs to identify gaps in QA processes by analyzing

reasons for the defects’ injection and the defects’ escape to the field. Upon identifying the

gaps, actions should be derived and taken to prevent injection and escape of defects in

future releases of the software. Additional data can be extracted by focusing the analysis

on subsets of data grouped by testing team, functionality, etc.

Since we assume that the number of customers remains constant for all four releases Eq.

(4.10) implies metric M2 is a scaled version of M1. Therefore, the number of defects

affecting a certain fraction of the customer base is larger for v.4 than for v.3. At this stage

a customer should perform risk-benefit analysis: would the value of v.4’s new features

outweigh the increased risk of encountering defects35. The customer can perform

additional analysis by looking at M2 for a specific subset of defects that may critically

affect operations, e.g., defects in critical functionality leading to a software crash, while

omitting defects that are related to functionality not used by this particular customer.

4.4.2.2 Resource Allocation

Application of metrics M3-7 for resource allocation is discussed in Sections 4.3.1.1 and

4.3.2.

A few examples of the value of these metrics are as follows. Suppose that the

maintenance team manager needs to analyze recourse allocation for building rediscovery-

related special builds for v.4 during the third year of service. Currently, the manager has

8 people allocated to this task so k=8. Given an available fix, the manager knows that the

average time for a team member to create, test, and ship a special build is two days: a

35 The complete analysis should include additional factors, such as software cost and support lifespan

98

person can handle on average 250 / 2 125μ = = requests per year36. Based on historical

data, we know that the process governing the arrival of rediscoveries during the third year

is the same as during the second year. Therefore, we can use the data from the second

year to get resource allocation estimates for the third year.

0 20 40 60 80 100

0
10

00
30

00
50

00

d

M
3

v.1
v.2
v.3
v.4

Figure 26. M3: expected total number of rediscoveries for defects with number of

rediscoveries above d during the 2nd year after GA date.

To put the importance of this team into perspective, the manager needs to know the

fraction of rediscovery-related special builds compared to the total number of requests for

special builds. The total expected number of rediscoveries is given by M3(1) (Eq. (4.12))

and shown in Figure 26. For simplicity, we use the number of defects discovered during

the second year as an estimate of the number of discoveries during the third year. In this

case (based on Figure 18) the expected number of discovered defects during the third

36 Assuming 250 working days per year.

99

year is approximately equal to N(2) – N(1) = 417. M3(1) for v.4 is equal to 1299. The

fraction of the total number of request for special builds related to rediscovered defects is

1299 / (1299 + 417) ≈ 0.76. This team will handle a significant portion of the overall

number of requests and, therefore, allocation of the personnel for this team can be

critical.

Equation (4.18) can be used to get the average number of requests that the team can

handle per year:

 8 125 1 1000.Q kμ= Τ = × × = (4.27)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L

M
5

v.1
v.2
v.3
v.4

Figure 27. M5: probability that the total number of rediscoveries will not exceed L

during the 2nd year after GA date.

Metric M5(Q) (Eq. (4.16)) is the probability that the number of requests will not exceed

Q. Based on Figure 27, M5(Q)= M5(1000) ≈ 0.984. This value can be interpreted as

follows: in the hypothetical case of the software being in service for 1000 years (and the

arrival of rediscoveries being stationary) in 984 years out of 1000 a team of 8 people

100

would be able to handle the requests, in 16 years out of 1000 the number of requests

would be larger than this team can handle.

What if the manager would like to know how many people is needed to handle requests

in 999 years out of 1000? By using Equation (4.19) and Figure 28, the number of people

needed to handle these requests is equal to:

 6 6((0.999) 1245 10.
125 1 125

M Mk
T
α

μ
)

= = ≈ ≈
×

 (4.28)

This suggests that the manager should allocate two additional team members to handle

this extreme case.

0.90 0.92 0.94 0.96 0.98 1.00

0
10

00
30

00
50

00

alpha

M
6

v.1
v.2
v.3
v.4

Figure 28. Estimate that the total number of rediscoveries will not exceed M6 with

confidence level α.

So far we did not consider the amount of time customers must wait to get their special

build. If, at a certain time, the maintenance team receives an avalanche of requests, the

101

customers will have to wait for a long time to obtain their special builds. In order to

obtain the expected waiting time, W, we need to model this queue [15] to consider 1) the

distribution of request inter-arrival times. [14]; and 2) the time to complete service. We

assume that the process is stationary, the queue is “First in, First out”, and the service

times are exponentially distributed with mean service time equal to 1/ 0.008μ =1/125 =

years. The empirical average number of requests for special builds of v.4 during the

second year is λ = 982 requests per year. The distribution of inter-arrival times for v.4

(second year) is given in Figure 29. We could not find an analytic distribution providing

good fit to the data. Due to this fact, we pick a queuing model denoted, using Kendall’s

notation [14], as G/M/k:

• G: general distribution of inter-arrival requests. In our case we will use the
empirical distribution in Figure 29,

• M: exponential distribution of service times,
• k: number of team members handling the requests.

Details of the model are given in [14].

0.000 0.004 0.008 0.012

Request Interarrival times (years)

D
en

si
ty

Figure 29. Density of requests inter-arrival times for v.4, second year.

102

Complementary to W, we calculate the percentage of the overall working time the team

members spend generating special builds:

 / () 100.b kλ μ= × (4.29)

For example, average busy time for 8 team members is

982 / (8 125) 100 98.2%.b = × × ≈

Model results are given in Table 13 showing that 8 team members can handle service

requests. However, average waiting time will be 26.3 working days, which may be

unacceptably long. Increasing the team to 10 decreases W to 2.9 days and a 12 member

team further reduces W to 2.2 days. However the associated busy time of team members

drops from 98.2% for 8 team members to 65.5% for 12 team members.

Table 13. Results of the G/M/k model for v.4, second year.
Average waiting time W Number of

team
members k in years in working

days

Percent of the
time the team
members are

busy (b)
8 0.1052 26.3 98.2%
9 0.0170 4.3 87.3%
10 0.0115 2.9 78.6%
11 0.0097 2.4 71.4%
12 0.0089 2.2 65.5%

With this information, the manager can now select the optimal team size and plan

additional tasks for the team members to fill their free time. The analysis of support

personnel allocation is performed in a similar manner.

4.4.3 Threats to Validity

The underreporting of problems by customers can skew the dataset making the right tail

of the Di distribution heavier. Two main types of defects are not reported to the service

desk: 1) defects with low severity with obvious workarounds and 2) non-reproducible

defects that the customers encounter during coincidences of multiple events which

disappear after restarting the software.

103

Underreporting may bias the analysis of actual software quality (Section 4.4.2.1).

However, bias will be consistent across releases as long as underreporting is.

Underreporting will not affect resource allocation processes (Section 4.4.2.2), since

service and maintenance teams are interested in prediction of the actual number of

support or special build requests. For them, a bug that is not reported does not exist.

4.5 Conclusions
Defect rediscovery is an important problem affecting both software manufacturers and

customers. We have introduced a set of practical metrics designed to assess risks

associated with defect rediscovery. The metrics can help the QA team with performance

analysis of QA processes. They aid support and maintenance teams with resource

allocation and with estimation of risk associated with under-staffing. Finally, the metrics

provide customers with information on quality of various software products to help

identify products best suited for their needs. The metrics can be applied to any defect

rediscovery dataset and are distribution-independent. We believe that these metrics are

applicable to other software products. We also presented a validation case study showing

application of the metrics to industrial data.

References
[1] R. Chillarege, S. Biyani, and J. Rosenthal, “Measurement of Failure Rate in

Widely Distributed Software,” Proceedings of the Twenty-Fifth International
Symposium on Fault-Tolerant Computing, 1995, pp. 424-433.

[2] A. Mockus and D. Weiss, “Interval quality: relating customer-perceived quality to
process quality,” Proceedings of the 30th international conference on Software
engineering, 2008, pp. 723-732.

[3] C.T. Baker, “Effects of Field Service on Software Reliability,” IEEE Trans.
Softw. Eng., vol. 14, 1988, pp. 254-258.

[4] S.S. Gokhale and R.E. Mullen, “Queuing Models for Field Defect Resolution
Process,” Proceedings of the 17th International Symposium on Software
Reliability Engineering, 2006, pp. 353-362.

[5] S.S. Gokhale and R. Mullen, “Software defect repair times: a multiplicative
model,” Proceedings of the 4th international workshop on Predictor models in
software engineering, 2008, pp. 93-100.

104

[6] R. Hewett and P. Kijsanayothin, “On modeling software defect repair time,”
Empirical Softw. Eng., vol. 14, 2009, pp. 165-186.

[7] S. Wagner and H. Fischer, “A Software Reliability Model Based on a Geometric
Sequence of Failure Rates,” Reliable Software Technologies – Ada-Europe 2006,
2006, pp. 143-154.

[8] E.N. Adams, “Optimizing preventive service of software products,” IBM J. Res.
Dev., vol. 28, 1984, pp. 2-14.

[9] R.E. Mullen and S.S. Gokhale, “Software Defect Rediscoveries: A Discrete
Lognormal Model,” Software Reliability Engineering, International Symposium
on, 2005, pp. 203-212.

[10] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,” ACM Trans.
Softw. Eng. Methodol., vol. 18, 2008, pp. 1-26.

[11] A.P. Wood, “Software Reliability from the Customer View,” Computer, vol. 36,
2003, pp. 37-42.

[12] A. Mockus, P. Zhang, and P.L. Li, “Predictors of customer perceived software
quality,” Proceedings of the 27th international conference on Software
engineering, 2005, pp. 225-233.

[13] M. Buckley and R. Chillarege, “Discovering relationships between service and
customer satisfaction,” Proceedings of the International Conference on Software
Maintenance, 1995, p. 192.

[14] D. Gross, J.F. Shortle, J.M. Thompson, and C.M. Harris, Fundamentals of
Queueing Theory, Wiley-Interscience, 2008.

[15] P.L. Li, M. Shaw, and J. Herbsleb, “Selecting a defect prediction model for
maintenance resource planning and software insurance,” Proceedings of the Fifth
Workshop on Economics-Driven Software Research, 2003, pp. 32-37.

[16] J.R.M. Hosking, “The four-parameter kappa distribution,” IBM J. Res. Dev., vol.
38, 1994, pp. 251-258.

[17] R.M. Vogel and N.M. Fennessey, “L Moment Diagrams Should Replace Product
Moment Diagrams,” vol. 29, 1993, pp. 1745-1752.

[18] N.L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate
Distributions, Vol. 1, Wiley-Interscience, 1994.

[19] H. Akaike, “A new look at the statistical model identification,” IEEE Trans. on
Automatic Control, , vol. 19, 1974, pp. 716-723.

[20] L. Makkonen, “Bringing Closure to the Plotting Position Controversy,”
Communications in Statistics - Theory and Methods, vol. 37, 2008, pp. 460-467.

105

Chapter 5

5 Selection of Customers for Operational and Usage
Profiling

Operational and usage profiles collected from customers provide developers and testers

with valuable quantitative information on usage patterns of software being developed.

Unfortunately, gathering such profiles from a large set of customers can be challenging

due to time and resource constraints. In this chapter we propose to use information about

defects that customers found to narrow down a list of candidate customers to profile. We

present a technique for selection and prioritization of a minimal set of customers for

operational and usage profiling to cover a certain set of defects. The technique optimally

selects a minimal set of customers for profiling and, once the set is identified, prioritizes

the customers within the minimal set. We describe a validation case study confirming that

this approach is scalable for a large customer base. Analysis results can then be used to

close gaps in testing coverage and to improve the maintenance process.

5.1 Introduction
The number of execution paths grows combinatorially with software size [6]. Therefore,

it is almost impossible to cover all execution paths because of development complexity,

time and resource constraints. Analysis of field defects allows us to identify major testing

gaps and close them, thereby improving the testing quality of future releases. If a

customer reports a lot of defects, we can deduce that customers’ usage patterns cover a

lot of execution paths that had not been covered in-house. We can profile these customers

(gather data, workloads, etc.) and incorporate this information in testing scenarios.

If software is used by a large number of customers, we cannot possibly profile all of

them. Moreover, some of the customers might not provide us access to their system or

106

data for confidentiality, statutory, or contractual reasons37. Fortunately, information

about defects that each customer discovers provides us with a list of problematic areas

covered by each particular customer. Analysis of this data can help us to narrow down a

list of “interesting” customers that we need to profile.

This chapter proposes a technique that 1) optimally selects a minimal set of customers for

profiling and 2) once the set is identified, prioritizes the customers within the minimal

set. Results from a case study we conducted (described in this paper) show that this

approach is scalable for use in large-scale software development environments.

This approach helps to

• reduce defect escapes to the field38,

• close gaps in test coverage, and

• prioritize test coverage.

Let us look at each of the benefits in detail.

Reduce defect escapes to the field: The goal is to reduce and or eliminate software

defects that escape to the field. This has a direct impact on improving the quality and

reducing the maintenance cost of software in the field. Improving either or both of these

will increase customer satisfaction and reduce maintenance and development cost over

the lifetime of the product. This work discusses a method to identify defects that need to

be addressed in order to close the gaps in coverage, both in the test and development

process in order to reduce defect escapes to the field. We also provide a method to

37 For example, a database may contain sensitive information such as confidential financial or research
data.
38 Field defects are defects found by customers during post-release phase.

107

identify customers for operational profiling39 [7] to assist in gap analysis. Within these

two methods we will discuss how to prioritize and analyze the field defects.

Close gaps in test coverage: Field defects are a result of missed coverage from all

development processes. These can include escapes from design, code, test and

documentation reviews. The test escapes can occur in Unit, Function, System,

Integration, Regression, Alpha and Beta testing. The goal is to close these coverage gaps

by adding test coverage and/or process changes. The pervasiveness of a field defect will

be used to identify defects that are hit by many customers and also to identify a set of

customers that have a high number of defects that are pervasive or have been hit by many

other customers. The latter will be used to identify customers who would be candidates

for operational profiling.

Operational profile test selection puts more emphasis on likely execution paths [7]. This

may lead to exclusion of critical but infrequently executed paths (e.g., disaster recovery

functionality). Coverage gaps identified during analysis of field defects provide us with

objective picture of gaps’ “importance”. The larger the number of discoveries of a

particular defect, the more important is the execution path associated with the defect.

Prioritize test coverage: One of the problems in software testing is determining what has

to be tested and the prioritization of this testing through various test processes [2]. Once

usage and profiling information is gathered from customers, these data should be

incorporated into in-house test cases and scenarios to improve overall code coverage.

Workloads that are associated with a large number of frequently discovered defects

should be given higher priority than those that are associated with a small number of

infrequently discovered defects.

39 An operational profile is a set of operations that a software system performs along with associated
probabilities of use.

108

The chapter is structured as follows: Section 5.2 reviews relevant work; Section 5.3

explains dimensions used for qualitative customer profiling; Section 5.4 details

quantitative customer selection technique; Section 5.5 describes a case study validating

our approach. Finally, Section 5.6 provides conclusions and future work.

5.2 Related Work
Operational profile development involves the following steps [7]:

1. Customer profile,

2. User profile,

3. System-mode profile,

4. Functional profile,

5. Operational profile,

6. Test selection.

Researchers focus on various aspects of operational profiling development: e.g., data

gathering [4], extension of data captured during profiling [3], test selection [10], and

reliability estimation [9]. However, to the best of our knowledge, no work has been done

in the area of selection of customers for profiling. We describe our approach for

prioritization of customers in the next section.

5.3 Qualitative Analysis Of Customers
Let us analyze customers qualitatively. We prioritize customers for profiling using two

dimensions:

1. Total number of defects found by a given customer,

2. Average number of discoveries per defect found by a given customer.

109

Prioritization criteria are described in Table 14.

We will go over the criteria for each of the four permutations (quadrants) in detail

• LL: The customer finds a small number of defects that are rarely discovered by

others. Incorporation of this customer’s usage allows us to close a small number

of gaps in testing of infrequently executed paths.

• HL: The customer finds a large number of defects that are rarely discovered by

others. This customer can be considered “unique”. Incorporation of a customer’s

usage allows us to close a large number of gaps in testing of infrequently executed

paths.

• LH: The customer finds a small number of defects that are often discovered by

others. These defects are clearly development, test process, and test coverage

misses. The defects need to be addressed as they are interesting from a test

process perspective. However, incorporation of this customer’s usage allows us to

close only a small number of gaps in testing of commonly executed paths.

• HH: The customer finds a lot of defects that are also found by other customers.

Incorporation of this customer’s usage allows us to close a large number of gaps

in testing of commonly executed paths.

Note that we cluster the data in the four quadrants without specifying explicit thresholds

for “low” and “high” values. The actual values of the thresholds will depend on the

underlying data, such as total number of customers and defects. This approach gives a

high level “taste” of the product’s quality.

Suppose we have identified two customers who discovered a large number of defects that

are also frequently discovered by other customers. We now need to make sure that the

lists of defects discovered by these two customers do not overlap significantly: otherwise,

we will be duplicating our effort.

110

Table 14. Customer prioritization criteria
Average number of discoveries per defect found by a given customer Total number of defects found

by a given customer Low High

Low LL: Not interesting from
profiling perspective

LH: Not interesting from
profiling perspective

High HL: Potential candidate for
profiling

HH: Ideal candidate for profiling

Manual selection of customers using a prioritization schema described above can become

cumbersome if a product is used by thousands of customers discovering hundreds of

defects. Therefore, conversion of this qualitative technique to quantitative domain is

difficult. We need to find a quantitative technique that will allow us to minimize the

number of customers for profiling while maximizing the total number of discovered

defects. Once a minimal set of customers are identified, we can prioritize them by the

total number of covered defects. Details of this approach are given in the next section.

5.4 CUSTOMER SELECTION TECHNIQUE
Manual selection of customers using the prioritization schema described above can

become cumbersome if a product is used by thousands of customers discovering

hundreds of defects. We need to find quantitative techniques that will allow us to:

1. Minimize the number of customers for profiling while maximizing the total

number of discovered defects;

2. Prioritize a minimal set of customers (once identified) by the total number of

discovered defects per customer.

We describe a minimization technique in Section 5.4.1 and a prioritization technique in

Section 5.4.2.

5.4.1 Minimization of Customer Set

In order to minimize a set of customers we propose to formulate this task as a Binary

Integer Programming (BIP) problem [8]. We want to identify a minimal set of customers

that discovered all defects.

111

Formally, we need to

1 1 2 2

1 1,1 1 1,2 2 1,

2 2,1 1 2,2 2 2,

,1 1 ,2 2 ,

1 2

Minimize ,
subject to

: 1,
: 1,

: 1,
binary variables: , , , ;

N N

N N

N N

M M M M N N

N

w c w c w c

d p c p c p c
d p c p c p c

d p c p c p c
c c c

+ + +

+ + + ≥

+ + + ≥

+ + + ≥

…

…
…

"
…
…

 (5.1)

where

• N ≡ total number of customers;

• M ≡ total number of defects;

• ci ≡ i-th customer (i = 1 … N), ci = 1 if the i-th customer is included in the

minimal set of customers to profile and is 0 otherwise;

• wi ≡ i-th customer weight;

• dj ≡ j-th defect (j=1…M);

• pi,j ≡ binary variable showing discovery of the j-th defect by the i-th customer,

pi,j=1 if the i-th customer discovered the j-th defect and is 0 otherwise.

If we want to emphasize “importance” of the i-th customer, then we should increase

weight wi relative to the weight of the remaining customers. For example, wi can be

proportional to the difficulty of gathering information from the i-th customer and

inversely proportional to the average number of discoveries per defect found by the i-th

customer. If all customers are considered equal then wi=1 for all i.

In short form (5.1) can be written as

Minimize ,
subject to 1,
binary variables: .

Tw c
pc

c
≥ (5.2)

112

This approach should provide us with the optimal solution [8]. In general, solution of BIP

problems is NP-hard. However, if a constraint matrix p is totally unimodular40 and the

right hand side of constraints consists of integer values, then the problems can be solved

efficiently [8]. Our problem formulation falls into this category of BIP problems.

5.4.1.1 Example of Selection of the Minimal Set of Customers for
Profiling

Suppose we have four customers (c1, c2, c3, and c4). The customers discovered five

defects (d1, d2, d3, d4, and d5) in total. Their discoveries are summarized in Table 15.

We assume that all the customers are of equal importance and w=1. Equation (5.1)

becomes

1 2 3 4

1 2

2 1 2 3

3 1 3

4 3 4

5 4

1 2 3 4

Minimize ,
subject to

: 1,
: 1,
: 1,
: 1,
: 1,

binary variables: , , , .

c c c c

d c
d c c c
d c c
d c c
d c

c c c c

+ + +

≥
+ + ≥
+ ≥
+ ≥
≥

 (5.3)

The solution to this problem is c1=0, c2=1, c3=1, and c4=1; i.e., the minimal set of

customers for profiling that cover all defects is {c2, c3, c4}.

Once a minimal set of customers for profiling is selected, we need to prioritize this

minimal set.

40 A totally unimodular matrix is a matrix for which every square non-singular submatrix is unimodular
(i.e., with determinant +1 or -1).

113

Table 15: Example. Defects’ discovery
Customers Defects c1 c2 c3 c4

d1 ×
d2 × × ×
d3 × ×
d4 × ×
d5 ×

5.4.2 Prioritization of Customers within the Minimal Set

In order to prioritize customers within the set of customers for profiling we propose to

use the following greedy heuristics41. The customer prioritization heuristic greedily

selects the customer with the largest number of non-covered defects. Once the customer

is selected, the customer’s defects are marked as covered. The process repeats itself until

all the defects are covered at least once. We avoid applying this heuristic to the initial set

of customers directly (skipping the BIP step described in the previous subsection)

because of the sub-optimality of the heuristics [1].

5.4.2.1 Example of Prioritization of Customers within the Minimal
Set of Customers for Profiling

Let us use the data from the example described in Section 5.4.1.1. The minimal set of

customers for prioritization is {c2, c3, c4}. “Non-covered” defects per customer are {{d1,

d2}, {d2, d3, d4}, {d4, d5}}, respectively. Since c3 discovered the largest number of

defects, we pick c3 as the first customer to profile. We now mark defects d2, d3, and d4 as

“covered” and remove them from the non-“covered” list. The defects list is changed to

{{d1}, {∅}, {d5}}: customers c2 and c4 have one uncovered defect. We arbitrarily pick c2

as the second customer for profiling and c4 as the third one.

41 That is heuristic making locally optimal choice at each stage.

114

5.5 Validation Case Study
Our experimental ground is a complex commercial software application with over 10

million lines of uncommented source code and a large customer base. To verify our

technique, we selected defects for core components42 of the software under study over a

five-year period43. These defects were discovered by a few thousand customers.

In general, depending on a particular goal, an analyst may focus on a specific set of

defects. For example, one can filter defects by:

• severity,

• relation to a specific functionality,

• specific symptoms (e.g., crash, data corruption).

5.5.1 Exploratory Analysis

To analyze defects based on the quadrants described in Section 5.3, we create a scatter

plot of the total number of discovered defects versus the average number of rediscoveries

per defect per customer (where each point represents a specific customer). Results are

shown in Figure 30. As we can see, the quality assurance team does a good job of finding

defects in frequently executed paths: there are not too many frequently rediscovered

defects. Therefore, if we split Figure 30 in four quadrants symmetrically, there will be no

customers in the top-right (HH) quadrant (i.e., there will be no “ideal candidates for

profiling” as per Table 14 classification). We have to split the plot asymmetrically.

Quadrant borders are selected manually and denoted by dotted lines in Figure 30. The

data can then be described as

42 Internal defects database data was validated using various data mining procedures.
43 In order to stabilize the number of discoveries per defect, we select defects that were first discovered at
least six months before this case study was performed.

115

• Bottom-left (LL) and Top-left (LH) quadrants: majority of the customers find a

small number of defects that are rediscovered infrequently (LL) or frequently

(LH) (“not interesting from a profiling perspective”);

• Bottom-right quadrant (HL): a small number of customers discovers infrequently

rediscovered defects (“potential candidates for profiling”);

• Top-right quadrant (HH): a fraction of customers discovers frequently

rediscovered defects (“ideal candidates for profiling”).

Let us use our automatic procedure to select a minimal set of customers for profiling.

Number of defects discovered by customer

A
ve

ra
ge

 n
um

be
r o

f d
is

co
ve

rie
s

pe
r d

ef
ec

t p
er

cu

st
om

er

Figure 30. Total number of discovered defects vs. average number of rediscoveries

per customer. Dotted lines depict borders of quadrants described in Table 14.

5.5.2 Selection of the Minimal Set of Customers

Manual selection of customers to profile is impractical. Therefore, we apply the BIP

technique described in Section 5.4.1 to our dataset. We assume that all customers have

equal weight: wi = 1 for all i in equation (5.1). The problem is solved using IBM®

116

ILOG® CPLEX® solver [5]. The solution to the BIP problem is found in less than one

second (on an Intel® Pentium® 4 computer) using the solver’s default optimization

routines.

Analysis shows that we need to profile 26% of our customers to cover all the defects

found in the field. Results of customer prioritization (using greedy heuristics as described

in Section 5.4.2) are shown in Figure 31 and Figure 32 (“all defects” curves) and Table

16 (“defects discovered at least 1 time” row). As we can see, the cumulative coverage

curve is steep: we need to profile 9% of customers to cover 80% of defects. However, in

the case of a large customer base, we may need to decrease a set of customers to profile

even further. In order to do this, based on the criteria shown in

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00% 10.00% 20.00% 30.00%

Percent of the total number of customers

Pe
rc

en
t o

f d
ef

ec
ts

All defects Discovery count >= 2
Discovery count >= 5 Discovery count >= 10

Figure 31. Percentage of the total number of customers needed to cover a certain

percentage of defects of interest.

Table 14, we will focus on the defects that were discovered multiple times. Results are

shown in Figure 31, Figure 32, and Table 16. The minimal set of customers decreases

117

rapidly as the number of defects of interest decreases. For example, we need to profile

0.9% of the customer base to cover all defects discovered at least 10 times.

Table 16. Percentage of the total number of customers needed to cover X% of

defects discovered at least Y times
Cover X% of defects Defects discovered

at least Y times 80% 100%
1 8.9% 25.9%
2 3.5% 11.1%
5 1.1% 3.0%
10 0.4% 0.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.01% 0.10% 1.00% 10.00% 100.00%

Percent of the total number of customers

P
er

ce
nt

 o
f d

ef
ec

ts

All defects Discovery count >= 2
Discovery count >= 5 Discovery count >= 10

Figure 32. Percentage of the total number of customers needed to cover a certain

percentage of defects of interest (log-scale).

118

5.6 Summary
Operational and usage profiles collected from customers provide developers and testers

with valuable quantitative information on usage patterns of software being developed.

Unfortunately, gathering such profiles from a large set of customers can be challenging

because of time and resource constraints; moreover, customers may refuse to provide

access to their systems for confidentiality and legal reasons. This limitation also leads to

duplicate information being gathered, as such, information about customer defects can

help us to narrow down a list of candidate customers to profile.

In this paper we discussed a technique for the selection and prioritization of a minimal set

of customers for operational and usage profiling to cover a certain set of defects. This

was achieved using the Binary Integer Programming algorithm. After identifying a

minimal set of customers for profiling, we used greedy heuristics to prioritize the set of

customers. We performed a validation case study that confirms that this approach is

scalable and can produce output for a large customer base (involving thousands of

customers) within seconds. In addition, we discuss defect prioritization schema based on

frequency of defect rediscovery by customers. Analysis results can then be used to close

gaps in testing coverage and to improve maintenance process.

References
[1] Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. 2001 Introduction to

Algorithms. 2nd. McGraw-Hill Higher Education.

[2] Elbaum, S., Rothermel, G., Kanduri, S., and Malishevsky, A. G. 2004. Selecting a
Cost-Effective Test Case Prioritization Technique. Software Quality Control 12, 3
(Sep. 2004), 185-210.

[3] Gittens, M., Lutfiyya, H., and Bauer, M. 2004. An Extended Operational Profile
Model. In Proceedings of the 15th international Symposium on Software
Reliability Engineering (November 02 - 05, 2004). ISSRE. IEEE Computer
Society, Washington, DC, 314-325.

[4] Hassan, A. E., Martin, D. J., Flora, P., Mansfield, P., and Dietz, D. 2008. An
Industrial Case Study of Customizing Operational Profiles Using Log
Compression. In Proceedings of the 30th international Conference on Software

119

Engineering (Leipzig, Germany, May 10 - 18, 2008). ICSE '08. ACM, New York,
NY, 713-723.

[5] IBM® ILOG® CPLEX®: http://www.ilog.com/

[6] Jasper, R., Brennan, M., Williamson, K., Currier, B., and Zimmerman, D. 1994.
Test data generation and feasible path analysis. In Proceedings of the 1994 ACM
SIGSOFT international Symposium on Software Testing and Analysis (Seattle,
Washington, United States, August 17 - 19, 1994). T. Ostrand, Ed. ISSTA '94.
ACM, New York, NY, 95-107.

[7] Musa, J. D. 1993. Operational Profiles in Software-Reliability Engineering. IEEE
Softw. 10, 2 (Mar. 1993), 14-32.

[8] Papadimitriou, C. H. and Steiglitz, K. 1998 Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, Inc.

[9] Weyns, K. and Runeson, P. 2007. Sensitivity of software system reliability to
usage profile changes. In Proceedings of the 2007 ACM Symposium on Applied
Computing (Seoul, Korea, March 11 - 15, 2007). SAC '07. ACM, New York, NY,
1440-1444.

[10] Yamany, H. EL and Capretz M.A.M., 2007. A Multi-Agent Framework for
Building an Automatic Operational Profile, In Advances and Innovations in
Systems, Computing Sciences and Software Engineering, Springer, 161-166

120

Chapter 6

6 Modelling Assumptions and Requirements in the
Context of Project Risk

The importance of assumptions in Requirements Engineering has long been recognised.

However, to the best of our knowledge, no quantitative models for the relation between

assumptions and requirements are yet available. We propose a temporal mathematical

model of the relationship between assumptions and requirements in the context of

predicting risk associated with assumptions failure in a software project. This model

incorporates two sources of structure. One, the inter-relation between assumptions and

requirements are described using a Boolean network. Two, the invalidity of assumptions

and the requirements change, it is assumed, may be modelled as a stochastic process. The

chapter gives an illustrative example of how the model can be used to assess project risk.

6.1 Introduction
It is generally accepted among software engineers that assumptions underlie the

requirements “iceberg” [12, 13] and are reflected in software. For example, the

requirements for a stack of numbers could have an undocumented underlying assumption

that the stack is so large on the physical device that the users could not possibly fill it up.

In software, therefore, it is quite conceivable that the programmer did not test for an

overflow condition. Unfortunately, the assumption can be incorrect and lead to a software

failure. Many researchers thus emphasize the importance of documenting assumptions

[16, 18, 13], [22, pp. 102, 157]. In our simple stack example above, the maximum

allowable stack size should be made explicit, which would help in writing code to test for

an overflow situation and thereby prevent software from failing at that point. Lehman and

Ramil [16], in fact, even suggest that personnel have to be trained in recording and

managing assumptions.

121

However, the validity of assumptions can change with time, for example, when the

application domain or the software's context changes [3, 16, 17]. For example, if the

stack software is ported to a device with a smaller possible stack size then the software

can fail again if this limit is not appropriately modified upon porting. Moreover, the

assumptions can be wrong from the very beginning, though the developers are not aware

that they are false [7, pp. 271-272].

In practical terms, the invalidity of assumptions is a source of problems [16, 12] for

software developers and users alike. For developers, for example, invalid assumptions

can imply having to fix software as a consequence of software failure or quality

degradation, not to mention customer dissatisfaction, loss of market share and reputation.

For the users, invalid assumptions can imply anything from poor software services to

increased cost of business operations because of software failures.

Thus, during software modification the validity of the old assumptions need to be

rechecked, not only the correctness of “old code” as generally done during regression

testing. Also, developers need to ensure that the new assumptions do not violate old ones

[7, pp. 271-272], [14, 16] and if they do then the conflicts need to be resolved. All of this

suggests that assumptions need to be explicitly recorded and managed, and changes to

them predicted and tracked.

For an operational system, the volatility44 of the validity of the assumptions can imply

shocks to the associated implemented requirements which imply, at best, a diminishing

value of the existing software system and, at worst, software failure with corresponding

consequences to the end user. For a software project in the planning or development

44It is not only assumptions that are volatile. Requirements, independent of the underlying assumptions,

can become “invalid”, say, because the stakeholders need different services from the software over time. In

this paper, we simply treat any change in requirements as the removal of old ones followed by the insertion

of appropriate new ones.

122

stages, such volatility translates into an invalidity risk. The risk here is that the software

being developed (or changed) may not be as desirable upon completion as first imagined.

It is thus important to be able to predict, during the early stages of requirements

engineering and periodically from then on during development, the amount of invalidity-

risk inherent in the software project. Just note that in a software project there are also

other kinds of risks to contend with, such as technical risks, personnel risk, budgetary

risk, timely deliverability risk, business risk, etc., which are out of scope of this paper45.

For the prediction of invalidity risk, there is a need to model the relation between

assumptions and requirements and, using this relation, compute a measure of risk. The

key idea is that if an assumption becomes invalid, it may reduce the validity of the

associated requirements, thereby increasing risk. But, of course, there are assumption-

assumption and requirement-requirement relationships, which must also be considered in

the model. The paper defines specific metrics which serve to predict risk.

To put such a model into practice, we need to consider at least two scenarios. One is

intra-release cycle-time, where invalidity risk is predicted at the start of the project for

different time-stamps within the release cycle until the project-end. This would give us

intra-release risk trends. The second scenario is prediction over multiple releases to

obtain a risk trend over a longer period of time. The chapter describes an algorithm to

cover both of these scenarios and gives an example (from a banking application) of how

the model could apply in practice.

The next section describes related work. This is followed by the requirement-assumptions

relationship in Section 6.3. Section 6.4 describes the modelling tools: boolean network

and stochastic processes. Section 6.5 then describes the properties of requirements, the

45Therefore, unless indicated otherwise, from here on in, “risk” is meant to mean invalidity risk.

123

risk metrics based on these properties, and how to model risk trends. Section 6.6 gives an

example simulation from a banking application. Section 6.7 then concludes the chapter.

6.2 Related work
The subject of assumptions in software systems is not new by any means. As early as the

late 1960's, Lehman studied the growth complexity of the OS/360 operating system and

had made growth predictions based on certain assumptions about the development

processes that would be used [15]. More recently, together with Ramil [16], Lehman has

explored assumptions more deeply in the context of software evolution, especially:

domain changes and their impact on assumptions, mapping between assumptions and

software elements, relationships with other entities of interest (e.g., economic and

societal factors), need for documentation and review, a program's impact on the

operational domain, management of assumptions, and so on. Also, many other authors, as

described in the introduction, have referred to assumptions in their work.

It is not all theoretical however. In practice, developers make (explicit or implicit)

assumptions throughout a software project though there is little computational use of

assumptions in tools that could aid in achieving some tangible project goals, such as time

to delivery, development within budget and quality upon delivery.

Based on some meta-models in requirements engineering [19] in which the entity

assumption is related to other entities such as requirement and rationale, requirements

traceability tools, such as Doors [21], Rational Suite AnalystStudio [9], and CORE [2]

have been developed. While such tools allow representation of project items and

traceability using inter-relationships according to the meta-model followed, they are

mainly documentation and report generating tools as opposed to development or analysis

tools.

In the research community, there are goal-oriented requirements engineering approaches

and tools [11] which model the assumptions. The general objective is to derive a

consistent and valid set of requirements for further system development. The interest in

124

the subject of assumptions, in this community, has been high enough to attract a

conference panel session dedicated to this topic [8]. Besides giving motivation for

assumptions, Greenspan raised some important questions for this panel session, such as:

Who needs to keep track of the assumptions? How do we elicit assumptions? Whether

there would be any immediate benefits of doing so? How can we record and manage the

information? How do we use it? How much of the reasoning can be done by tools?

One of the concerns with the work on assumptions, however, is that developers are

reluctant to put time and resources into documenting assumptions because the payback

cycles can be long and, often, not to the person who originally documented the

assumptions. For example, the assumptions underlying a requirement can be quite useful

in questioning the validity of the requirement long after it has been implemented, so here,

the payback is much later, possibly to a new person on the job.

One way to overcome this resistance, which we learned from our industrial collaboration,

is external or internal legislation which would require that assumptions (and their

rationale) be documented. Thus, in legal situations, there would be traceability of the

decisions made. This is an organizational factor which also does not lend towards a

concrete project goals but is usually justified in terms of business requirements.

Thus, there is a need to find ways to make short-term use of assumptions with

demonstrable project benefits. The goal of our work is precisely in this direction.

Operationalising our proposed model would lead to tangible results in terms of

determining system invalidity-risk in different contexts. For example, when considering

alternative strategies for providing a superior solution to a user, our model could help in

determining the relative levels of system invalidity. Also, as a project progresses, it is

important to be able to determine periodically the level of future risk perceived at that

time so that corrective action can be taken as early as possible. The proposed model is

thus an important aid to management decisions in software projects.

125

6.3 Requirements & Assumptions
Let us now formalize the assumptions properties, discussed in Section 6.2.

6.3.1 Assumptions Formalization

There exists a finite set of assumptions CA , which completely describes the system.

Elements in CA are assumed to be atomic, i.e., if the assumption is non-atomic, then it

can be represented as a larger set of simpler assumptions. As stated in [16], assumptions

can be explicit or implicit, conscious or unconscious. We can quantitatively measure only

documented assumptions. However, it is almost impossible to document all assumptions

in CA (see [16] and [7, p. 275]), since there is evidence that typical software projects

embed at least one assumption per ten lines of code [14]. For this model we assume that

the captured assumption set depicts the fundamental properties of the system.

We state that we will be able to capture a finite subset of assumptions A , such that

CA A⊂ , depicting the main properties of the software project. The number of

assumptions in A is given by AN (the count starts from one).

Let us introduce the binary variable () (,)V j t⋅ , having two states

 ()

1, if th member of () is valid at time
(,) = ,

0, if th member of () is invalid at time
j t

V j t
j t⋅

− ⋅⎧
⎨ − ⋅⎩

 (6.1)

 where ()⋅ represents some set (not necessary a set of assumptions) and V returns the

validity state of j -th member of the set, current time is denoted by t .

The time t validity of the j -th assumption is then given by (,)AV j t and may be in two

states − valid (1) or invalid (0), for = 1,..., Aj N . We assume that the switching process is

one-way, i.e. once the assumption becomes invalid it cannot become valid again.

126

Assumptions may depend on other assumptions in the set. Let us denote a dependent or

“child” assumption as aα and the set of parent assumptions as pA . If all assumptions in

pA fail, then aα fails too46:

=1

(,) = 0 (,) = 0,
NAp

A Apj
V j t V tα→∨ (6.2)

where ∨ is the logical “or” and Ap
N is the number of elements in pA .

pA can be divided into two disjoint subsets: the standard assumptions stdA and the key

assumptions keyA , =p std keyA A A∪ . If at least one assumption from keyA fails, then so

does aα :

=1

(,) = 0 (,) = 0,
NAkey

A Akeyj
V j t V tα→∧ (6.3)

where ∧ is the logical “and”, Akey
N is the number of elements in keyA .

If all assumptions in stdA fail, but at least one assumption in keyA is valid, it does not

imply the failure of aα :

=1 =1

(,) = 0 (,) = 0, if (,) = 1,
NN AA keystd

A A Astd keyj j
V j t V t V j tα∨ ∧g (6.4)

46 A → B means if A is true then B is also true.

127

where Astd
N is the number of elements in stdA . Although the failure of all assumptions in

stdA does not imply the failure of aα , this event could affect the probability of future

survival of aα . This will become evident when we discuss stochastic models for failures

in Section 6.4.2. These relations should be specified by the user for each particular case.

Note that when no key assumptions are present Equation (6.4) transforms to Equation

(6.2).

6.3.2 Requirements Formalization

As in the case of assumptions, we have a finite set of requirements CR . We are capable of

capturing a finite subset of requirements R having RN elements. A requirement in our

model has a value of '1' or '0'. A '1' at any given time-state implies that the requirement is

desirable (above some threshold). A '0' at any given time-state implies that either the

importance of the valid requirement is below a certain threshold and, hence, is not

desirable; or that the requirement is not valid. Both of these types of '0' state can induce

change at the appropriate future time thereby increasing invalidity risk. However, we will

still apply (6.1) in the sense that the term “valid” (“invalid”) is interpreted as “desirable”

(“undesirable”).

The j -th requirement is given by the binary variable (,)RV j t . As with assumptions, once

a requirement is removed from specification, it cannot be re-inserted there in the future.

The removal of a requirement in the specification list may lead to modification or

removal of other requirements. Similar to assumptions, we postulate a dependent

requirement rβ and the set of parent requirements pR . Let the parent set be further

divided into the standard stdR and the key keyR disjoint subsets of requirements,

=p std keyR R R∪ .

In contrast with the assumptions model, the removal of all requirements in pR will not

necessarily (if keyR is empty) lead to removal of rβ from R :

128

=1

(,) = 0 (,) = 0,
NRp

R Rpj
V j t V tβ∨ g (6.5)

where Rp
N is the number of elements in pR .

A removal of a single requirement in keyR leads to the removal of rβ :

=1

(,) = 0 (,) = 0,
NRkey

R Rkeyj
V j t V tβ→∧ (6.6)

where Rkey
N is the number of elements in keyR .

The removal of all requirements in stdR does not imply the removal of rβ :

=1

(,) = 0 (,) = 0,
NRstd

R Rstd
j

V j t V tβ∨ g (6.7)

where Rstd
N is the number of elements in stdR , but, as in the assumptions case, may

influence the probability of removal of rβ .Let us now consider how the assumptions

influence requirements.

6.3.3 Requirements & Assumptions Interaction

In Sections 6.3.1 and 6.3.2 we treated assumptions and requirements independently.

However, we know that assumptions influence requirements. We extend the ideas in the

previous section and say that requirement rβ will depend not only on a parent set of

requirements pR but also on a set of underlying assumptions pA split into stdA and keyA .

Thus we postulate that the failure of all underlying assumptions or at least one key

assumption will lead to “undesirability” of rβ ; the failure of all assumptions in stdA will

not lead to “undesirability” of rβ , given that at least one assumption in keyA is valid:

129

=1

=1

=1 =1

(,) = 0 (,) = 0,

(,) = 0 (,) = 0,

(,) = 0 (,) = 0, if (,) = 1.

NAp

A Rpj

NAkey

A Rkeyj

NN AA keystd

A R Astd keyj j

V j t V t

V j t V t

V j t V t V j t

β

β

β

→

→

∨

∧

∨ ∧g

 (6.8)

Let us now consider the mathematical tools suitable for modelling this behavior.

6.4 Modelling tools
The state change of assumptions and requirements happens for various reasons, such as

• An assumption or requirement was elicited incorrectly.

• The operational domain changes which, in turn, leads to changes in the

assumptions and requirements sets.

• An assumption (or requirement) changes state because parent assumption(s) (or

requirement(s)) changes state.

We can think of the first two points as an “external force” acting on the system. The third

point can be treated as an “internal force”, since once the relations between the members

of the set have been identified, the system becomes closed -- member states of a given set

depend only on the state of the parent set members. Let us first discuss an approach to

modelling the “internal force” through the use of boolean networks. This is followed by a

description on modelling the “external force” by an event arrival process. We then

synthesize the two models into a hybrid model to show, algorithmically, how the model

iterates through the time-stamps within the cycle-time for one release or through multiple

cycle-times in the case of evolutionary releases. The purpose of such modelling is so that

130

later we can use these models to assess project risks, for example, assumptions and/or

requirements change.

6.4.1 Boolean network

For modelling the dependencies between child and parent members we suggest a Boolean

networks approach (see, for e.g., [10, pp. 182--203]). Boolean networks have many

applications and are widely used in modelling different cybernetic and neural networks,

molecular components of immune systems, etc. The network is constructed from “on-off”

nodes that can take only binary values. The system's behavior47 is governed by a set of

switching rules, which are called Boolean functions. Consider the following example.

Example 6.4.1 Let us consider the toy model inspired by the study of code decay in the

telephone switching systems [4]. The authors say that “...many of the original system

abstractions assume that subscriber phones remain in fixed locations”. Let this

assumption be represented by aα . In turn, aα may depend on three other assumptions: 1a

− the customer does not need the roaming feature (for stationary phones); 2a − the

hardware does not support roaming; 3a − no cell phones exists.

The relation between the above assumptions may be quite complicated. However, for

pedagogical purposes, let us consider two simple configurations.

1. Configuration I. The aα will be valid until all three parent assumptions fail. We

can write the Boolean function as [(1,) (2,) (3,)] = 0 (,) = 0A A A AV t V t V t V tα∨ ∨ → ,

the graphical representation is given in Figure 33.a.

47System behavior is in fact a sequence of system states at different time-stamps of interest, and system

state is defined by the validity of the assumptions and requirements at any given time.

131

2. Configuration II. Assume that 3a is the key assumption. Thus, if it fails then aα

fails too, even if 1a or 2a are still valid, see Figure 33.b. However, as in

Configuration I, if only 1a and 2a fail then aα is still valid. The Boolean function

is given by (3,) = 0 (,) = 0A AV t V tα→ ,

Figure 33. Example 4.1. Set up of assumptions for a. Configuration I; b.

Configuration II. Solid arrows denote standard relationship, dotted arrows denote

key relationship.

We may check how the Boolean functions affect the system state. In Table 17 we show

how the current state of nodes at time T will affect the Boolean function at the next time

instant T dt+ , where dt is an infinitesimal time increment (we assume that the changes

happen immediately).

6.4.2 Modelling Event Arrival

There are three key aspects of event modelling. One, at initial time the Boolean network

is initialized with validity values at each node. Two, each requirement has a degree of

importance, which can change over time. Three, the validity of each requirement can

change over time. This section describes how this is accomplished.

132

Table 17. Example 4.1. State changes of assumptions.

T T dt+
Configuration Configuration

I & II I II
aα 1a 2a 3a aα aα
1 0 0 0 0 0
1 0 0 1 1 1
1 0 1 0 1 0
1 0 1 1 1 1
1 1 0 0 1 0
1 0 1 1 1 1
1 1 0 0 1 0
1 1 0 1 1 1
1 1 1 1 1 1

6.4.2.1 Modelling Incorrect Elicitation

As mentioned above, an assumption or requirement may be invalid (i.e, in state zero),

even at initial time 0t , perhaps without knowing it. This can be captured by initializing

the values in the network randomly, using the random draw from some statistical

distribution. For instance, the binomial distribution is well suited for this type of problem.

The probability of incorrect elicitation may be determined based on historical data and/or

expert knowledge.

As time goes by, the operational domain and user expectations change. This may lead to

assumptions failure and requirements modification or removal. There are two sources of

problems that may lead to this event. The first one comes from the fact that importance of

requirement changes with time and the decrease of the importance value below a certain

threshold may lead to removal or change of the requirement. The second one comes from

the fact that validity of an assumption or requirement can change with time.

6.4.2.2 Modelling Requirement Importance

Let us denote the time t importance of j -th requirement as (,)I j t . In general, (,)I j t

should be modeled as a stochastic process (in the simplest case it can degenerate to a

constant value), since it is in general impossible to specify the importance value at some

133

future time instance. The parameters for this process and the value of the threshold ()I jτ

for j -th requirement should be obtained from the stakeholder. Let us consider an

example.

Example 6.4.2 Suppose that we elicited requirement r and the stakeholders told us that

the current importance is equal to four out of ten. They expect the importance of this

requirement to grow by two units per year and the variance of this prognosis is equal to

three units per year. They also mentioned that if a requirement importance drops below

two units it will be removed from the specification. Let us assume that we may model the

dynamics of (,)I r t by a stochastic processes, to be concrete, consider here a Brownian

motion [20, pp. 601-638]

Deterministic Random

(,) = () ,dI r t dt dW tμ σ+
�	
 ���	��

 (6.9)

where μ and σ are constants, and ()W t is a Wiener process [20, pp. 601-638]. We can

interpret μ as the velocity of the deterministic drift and σ captures the power of the

random diffusion component. It turns out (see [20, pp. 601-638] for details) that the

conditional probability distribution of importance at time t dt+ , given the importance

value at time t is normal with mean (,)I r t dtμ+ and a variance 2dtσ . In our case = 2μ

and = 3σ . An example of the five realizations of (,)I r t is given in Figure 34. As we

can see, even though we expect (,)I r t to grow, there is still some chance that the

requirement will be removed from specification.

134

Figure 34. Example 4.2. Five random realizations of (,)I r t

6.4.2.3 Modelling Validity Change

The evolution in time of the Equation (6.1) for requirements and assumptions can be

naturally modeled by some event arrival process. The family of Poisson processes are

used to model real and discretely countable events. For our purposes we are interested in

the time of the first event arrival triggering a state change at j -th node. A Poisson

process is governed by an intensity function (,)j tλ . We can think of (,)j tλ as the

average number of events arriving per unit time. Depending on the functional form of

(,)j tλ the processes have different names: if (,)j tλ is constant --- a Poisson process; if

(,)j tλ is a deterministic function of time --- an Inhomogeneous Poisson process; and if

(,)j tλ is governed by stochastic process --- a Doubly Stochastic Poisson process or Cox

process. For a detailed discussion see, for e.g., [20, pp. 288-327] and [1, pp. 72-82, 134].

135

The intensity of the process may be defined by interviewing stakeholders on their opinion

about the probability (or intensity) of failure of assumption or requirement at some future

date. Based on this data, we may decide which process is suitable for each particular case.

The relation between the time t probability of failure of the j -th node, denoted by

()[(,) = 0]P V j t⋅ , and intensity is given by

 ()
0

[(,) = 0] = 1 exp (,) ,
t

t
P V j t E j s dsλ⋅

⎧ ⎫⎡ ⎤− −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭∫ (6.10)

where []E ⋅ is the expectation operator. As an example, let us consider the probability of

failure behavior governed by a Poisson process.

Example 4.3 For a Poisson process with constant intensity () (,)j j tλ λ≡ Equation

(6.10) simplifies to

 (){ }() 0[(,) = 0] = 1 exp () .P V j t j t tλ⋅ − − −

6.5 Predicting risk at time t

6.5.1 Risk metrics

Let us first introduce the following metrics.

• Validity. Time t validity (,)RV k t of the k -th requirement defined by Equation

(6.1) is also used as a risk metric.

• Importance. Time t importance (,)I k t of the k -th requirement, introduced in

Section 6.4.2.2 is also used as a risk metric.

• Children weight. Requirements may depend on other requirements --- failure of

one requirement may lead to the failure of another. Therefore, the more children a

136

given requirement has, the more important it is. In order to capture this property,

we introduce the time t children weight (,)C k t of the k -th requirement:

=1

=1

=1

(,) , (,) 0
(,)(,) = ,

0, (,) = 0

NR
N jR
j

NR
j

c k t c j t
c j tC k t

c j t

⎧ ≠⎪⎪
⎨
⎪
⎪⎩

∑
∑

∑
 (6.11)

where (,)c k t is the overall number of children of the k -th requirement, and the

denominator is used for standardization.

• Use-cases participation weight. One requirement may participate in more than

one use-case. The more use-cases it belongs to at a particular time, the more

weight it has. The use-case weight of the k -th requirement is defined as

(,)

=1

(,)

=1 =1

1
(,)(,) = ,1

(,)

N k tU
i

N N l tR U
l j

m i tU k t

m j t

∑

∑ ∑
 (6.12)

where (,)m i t is the time t number of requirements in the i -th use-case, (,)UN k t

is the time t number of use-cases in which the k -th requirement participates, and

the denominator is used for standardization.

Naturally, a user can collect additional properties of requirements and construct other

measures that might be more suitable for her needs. Also, it is not clear at this time

whether the measures based on the above properties can be aggregated into a combined

measure. For this reason, the invalidity risk is predicted in the form of the n-tuple,

denoted by M , and composed from the measures: validity ()RV , importance ()I ,

children weight ()C , and use-case participation weight ()U :

 (,) = { (,), (,), (,), (,)}.RM k t V k t I k t C k t U k t (6.13)

137

For a set of requirements we can obtain a single value by summing up the values for each

of the metrics for all the requirements in the set. For example, for the set of requirements

R of size RN the total time t metric is given by
=1

(,) = (,)NR
j

M R t M j t∑ .

6.5.2 Single-run Algorithm: System State at Final Time

Recall that “system state” defines how valid the system is at a given time. We merge the

two types of models discussed in Sections 6.4.1 and 6.4.2 in order to compute the system

state starting from the initial time to some final time in one simulation. The steps needed

for this purpose are summarized in the following pseudo-algorithm.

Suppose the initial time is 0t and we want to simulate until time fT with time step tΔ .

We have at least two scenarios. One, intra-release cycle-time, where fT is the release

date for the software system and tΔ is periodic assessment of the validity of the

assumptions and requirements, say, based on stakeholder information. Two, over multiple

releases, where fT is some distant date of interest and tΔ is release-to-release dates.

1. Set the current time 0=it t .

a. Initialize the Boolean network and define Boolean functions and

intensities of the event processes for each node.

b. Initialize the system with random values based on the stakeholders opinion

of the probability of incorrect elicitation of assumptions or requirements.

c. Execute Boolean functions to determine the effect of validity changes.

d. Modify the intensities of event arrival for the nodes that were affected,

but have not changed to the zero state (effect of parent assumptions from

stdA and stdR specified by the user).

138

2. While i ft T≤

a. Set the time 1=i it t t− + Δ .

b. For each node j where () (,) = 1iV j t⋅

c. Determine the time of switching, eT , as the time of first event arrival of

the associated Poisson-type arrival process.

i. If node is an assumption then

1. If <e iT t set () (,) = 0iV j t⋅ .

ii. If node is a requirement then

1. Determine the value of (,)iI j t

2. If <e iT t or (,) < ()iI j t I jτ set () (,) = 0iV j t⋅ .

d. Do steps 1.c and 1.d.

The result of executing this algorithm is the state of the system in terms of the validity of

each requirement and assumption nodes at some final time fT . Note that essentially we

have executed the algorithm only once from 0t to fT . This gives us only one realization

(simulation run) of the system state at time fT . The prediction from one realization is

clearly not representative. We are actually interested in the expected value of the

prediction for all possible realizations of system evolution by taking an average of

multiple simulation runs. This is the subject of the next section.

139

6.5.3 Multiple-runs Algorithm: System State at Final Time

Because of the randomness built into this we cannot simulate all possible realizations of

the system. For this kind of problem we can apply Monte Carlo techniques, see [6]. The

Law of Large numbers tells us [6] that for sufficiently large numbers of realization the

expected value can be approximated by the average values of the n-tuple metric at time

fT obtained from different runs:

=1

=1 =1

=1 =1

1 ˆˆ ˆ ˆ(,) = (,) = { (,), (,), (,), (,)}

1 1(,), (,)

1 1(,), (,)

L

f n f R
n

L L

Rn f n f
n n

L L

n f n f
n n

M k T M k T V k t I k t C k t U k t
L

V k T I k T
L L

C k T U k T
L L

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑

∑ ∑

∑ ∑

�

 (6.14)

where L is the number of system realizations, and () (,)n fk T⋅ is the ()⋅ metric of n -th

system realization at time fT for k -th requirement.

The process can be summarized by the following pseudo-algorithm:

1. Set = 0sum .

2. for = 1n to L

a. Do the algorithm from Section 6.5.2 and obtain the value of (,)n fM k T .

b. Set = (,)n fsum sum M k T+ .

3. Estimator (,)fM k T
�

 is given by (,) = /fM k T sum L
�

, which is equivalent to

=1

1(,) = (,)L
f n fn

M k T M k T
L ∑

�
.

140

Let us now look at an example that will utilize all the mathematical tools described

above.

6.6 Simulation Example
The ATM Banking system needs access to the database of bank clients. The system must

be operational one year from now. Let us denote this requirement as 1r . Two groups of

stakeholders gave the following requirements: we have to implement the system using a

centralized database, denoted as X1 model, requirement 2r ; or a distributed database

denoted as X2 model, requirement 3r . Clearly, 2r and 3r are conflicting requirements.

The stakeholders gave the following assumptions underlying 2r :

1a − the developers are proficient in implementing X1 model,

2a − the X1 will handle the heavy transaction load;

and the following assumptions for 3r :

3a − the developers are proficient at implementing X2 model;

4a − the X2 will handle the heavy transaction load.

We also add a single assumption to 1r :

5a − we assume that one year term given for implementation is a strict deadline.

We may also deduce that the invalidity of 4a will imply invalidity of 2a . The failure of

2r or 3r will lead to the failure of 1r .

141

We have two methods for implementing a single use-case; which one is less risky? Let us

assume that there is no relation between these sets of assumptions and requirements, and

the rest of the system. Thus, we can treat the use-cases as separate systems.

Note that these use-cases are mutually exclusive. That is why during the calculation of

ˆ (,)U k t we assume that there is only one use-case. We model the dynamics of ˆ(,)I j t

using Brownian motion described in Example 6.4.2, using (6.9). The properties collected

from the stakeholder are given in Table 18 and Table 19. Both use-cases will have 1r in

them. In order not to confuse them, let us denote the one in the X1 model as 1r� and the

one in the *X2 model as 1r�� . Both instances of requirement 1r will have the same

properties at start time. Therefore, the X1 model requirements set will be given by

1 1 2= { , }R r r� , and X2 set by 2 1 2= { , }R r r�� . The relations between assumptions and

requirements are given in Figure 35.

Figure 35. Simulation setup. Circles denote assumptions, squares denote

requirements. Solid arrows denote standard relationship, dotted arrows denote key

relationship.

142

Table 18. Assumptions properties

1a 2a 3a 4a 5a

 (,)tλ ⋅ 0.05 0.15 0.20 0.05 0.01

Table 19. Requirements properties

1R 2R

1r� 2r 1r�� 3r

 (,)tλ ⋅ 0.01 0.02 0.01 0.02

(,0)I ⋅ 0.60 0.40 0.60 0.40
μ 0.10 0.25 0.10 0.20
σ 0.10 0.20 0.10 0.25

(,0)C ⋅ 0.00 1.00 0.00 1.00

 (,0)U ⋅ 0.50 0.50 0.50 0.50

We simulate the system behavior from 0 = 0t until = 1fT (we assume that time is

measured in years) with a weekly time step = 1/ 52tΔ . We also say that the requirements

and assumptions are elicited incorrectly with probability 0.02 (per year) and model this

using a binomial distribution. We also assume that failure of any parent standard node

will lead to an increase of child node intensity by 10%.

The average values of metrics for all requirements are obtained from ten thousand

realizations. We re-run each system realization simulation one hundred times to obtain

the standard deviation (sd) measurements. In order to obtain cumulative measures for

requirements in 1R and 2R we sum up the metric values for each of the requirements in

the use-case. The smaller the value the bigger the risk.

The metric values at = 1fT are given in Table 20. The dynamics of the metrics over time

is given in Figures 4, 5, 6, and 7. From these Figures we see that values of all four

metrics at the initial time were higher for the 2R set than the 1R set, i.e.,

2 1(,0) > (,0)M R M R
� �

. However, at the final time, three metrics of the n-tuple 2(,1)M R ,

namely 2
ˆ (,1)RV R , 2

ˆ (,1)C R , and 2
ˆ (,1)U R , are smaller than the same metrics from

143

1(,1)M R
�

. This tells us that the invalidity risk associated with implementation of model

X2 would be higher than the one associated with model X1. On the other hand, the

importance 2
ˆ(,1)I R of requirements in 2R is still higher than in 1R . Based on this

management can decide whether to implement 1R , which has less invalidity risk, or to

implement 2R , which is deemed more important at time fT .

Figure 36. The value of ˆ(,)V t⋅

144

Figure 37. The value of ˆ (,)C t⋅ .

Figure 38. The value of ˆ (,)U t⋅ .

145

Figure 39. The value of ˆ(,)I t⋅

Table 20. Metrics values at = 1fT (± denotes standard deviation)

 ˆ (,1)V ⋅ ˆ(,1)I ⋅ ˆ (,1)C ⋅ ˆ (,1)U ⋅

1r� 0.670 0.402 0.000 0.335

± 0.005 0.003 0.000 0.002

2r 0.711 0.469 0.670 0.377

± 0.004 0.003 0.005 0.003

1R 1.381 0.871 0.670 0.711

± 0.005 0.003 0.002 0.002

1r�� 0.648 0.455 0.000 0.324

± 0.004 0.003 0.000 0.002

3r 0.689 0.436 0.648 0.365

± 0.004 0.003 0.004 0.003

2R 1.337 0.891 0.648 0.689

± 0.004 0.003 0.002 0.002

146

6.7 Conclusions & Future Work
In this paper we establish a temporal, mathematical, model which describes the

interactions between assumptions and requirements of a software system in the context of

predicting the system's validity risk. We capture these relations using a Boolean Network.

The validity of the system over time is modeled using stochastic processes. An

illustrative example from the banking domain is given. In order to perform computations

we have developed a prototype software tool (not described in this paper due to lack of

space).

This work cuts through the barrier solidly experienced by practitioners that documenting

assumptions does not have a short-term payback [8]. In fact, it liberates them into using

documented assumptions (and requirements) properties to make assessment about a

system's invalidity over time (either in the intra-release context or over multiple releases

context).

Voicing the concerns of numerous researchers, Finkelstein and Kramer, in [5], pose a

critical question as to how to predict the effect of requirements change on a software

system. In this paper, we have demonstrated a proof of concept that modelling

assumptions and related requirements, supported by an underlying computing engine

(Boolean Network and stochastic processes), it is indeed possible to predict the effect of

external changes on the validity of a software system over time.

Our work in this area continues with investigation on system usability assumptions

developers make and how they correspond to system testing amongst other aspects of

software development.

References
[1] P.K. Andersen and Ø. Borgan and R.D. Gill and N. Keiding. Statistical Models

Based on Counting Processes of Springer Series in Statistics. Springer-Verlag,
New York, 1993.

[2] Vitech Corporation. CORE. http://www.vtcorp.com/.

147

[3] A.H. Dutoit and B. Paech. Rationale-Based Use Case Specification.
Requirements Engineering, 7(1):3-19, 2002.

[4] S.G. Eick and T.L. Graves and A.F. Karr and J.S. Marron and A. Mockus. Does
Code Decay? Assessing the Evidence from Change Management Data. IEEE
Transactions on Software Engineering, 27(1):1-12, 2001.

[5] A. Finkelstein and J. Kramer. Software engineering: a roadmap. ICSE '00:
Proceedings of the Conference on The Future of Software Engineering, pages 3--
22, 2000. ACM Press.

[6] G. S. Fishman. Monte Carlo of Springer Series in Operations Research.
Springer-Verlag, New-York, 2nd edition, 1996.

[7] D.C. Gause and G.M. Weinberg. Exploring Requirements: Quality Before
Design. Dorset House Publishing Company, 1999.

[8] S. Greenspan. Panel on recording requirements assumptions and rationale. IEEE
International Symposium on Requirements Engineering, pages 282, San Diego,
1993. IEEE Computer Society.

[9] IBM. Rational Suite AnalystStudio. http://www.ibm.com/.

[10] S.A. Kauffman. The Origins of Order. Self-Organization and Selection in
Evolution. Oxford University Press, Oxford, 1993.

[11] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Roundtrip
from Research to Practice . Proc. RE’04: 12th IEEE International Requirements
Engineering Conference,, pages 4-8, Kyoto, 2004. IEEE Computer Society.

[12] A. van Lamsweerde. Requirements engineering in the year 00: a research
perspective. ICSE '00: Proceedings of the 22nd international conference on
Software engineering, pages 5--19, 2000. ACM Press.

[13] A. van Lamsweerde and E. Letier. Handling Obstacles in Goal-Oriented
Requirements Engineering. IEEE Trans. Softw. Eng., 26(10):978--1005, 2000.

[14] M.M. Lehman. Software's Future: Managing Evolution. IEEE Software,
15(1):40-44, 1998.

[15] M.M. Lehman. The Programming Process. IBM Research Report, RC 2722, IBM
Research Centre, Yorktown Heights, NY, 1969.

[16] M.M. Lehman and J.F. Ramil. Rules and Tools for Software Evolution Planning
and Management. Ann. Softw. Eng., 11(1):15-44, 2001.

[17] D.L. Parnas. Software aging. ICSE '94: Proceedings of the 16th international
conference on Software engineering, pages 279--287, 1994. IEEE Computer
Society Press.

148

[18] A. Porter and L. Votta. Comparing Detection Methods For Software
Requirements Inspections: A Replication Using Professional Subjects. Empirical
Software Engineering, 3(4):355-379, 1998.

[19] B. Ramesh and M. Jarke. Toward Reference Models for Requirements
Traceability. IEEE Trans. Softw. Eng., 27(1):58--93, 2001.

[20] S.M. Ross. Introduction to Probability Models. Academic Press, San Diego, 8th
edition, 2002.

[21] Telelogic. DOORS/ERS. http://www.telelogic.com/.

[22] K.E. Wiegers. Software Requirements. Microsoft Press, 2nd edition, 2003.

149

Chapter 7

7 Managing the Escalation of Requirements
In this chapter we describe quantitative models that can be used for managing the

injection of requirements late in the software development process. We define such

requirements as “escalated requirements”. The models can aid in (1) predicting escalation

of previously elicited requirements, and (2) managing resources due to the escalation of

completely new (unknown during elicitation) requirements.

7.1 Introduction
Deciding on the set of requirements to be implemented in a future release of a software

system is done early in the development cycle, usually after the requirements

prioritization phase. However, for reasons difficult to control, at times requirements get

injected later in the development cycle. Typical examples would include a request from a

key customer to implement a “must-have” feature in the upcoming release of the software

system; a request from an executive who promised to deliver a certain feature to a client

to win a contract; or newly elicited requirements that take advantage of market shifts that

occur during development. We define such a situation as an “escalation” of a

requirement. An escalated requirement (ER) is a requirement that is not in the original

development plan48. Typically, a development plan will need to be approved by senior

management and acts as the “contract” between developers and managers. The contract

enforces that a committed requirement cannot be removed entirely or be substantially

changed. However, the contract does not prevent new requirements from being added to

development. The condition here is thus stricter for removal than for insertion.

48 We define the development plan as a set of requirements which have to be implemented in the future
release of a software system.

150

Note that an escalation will generally not occur in projects where the set of requirements

to be implemented remains constant after the requirements engineering phase is

complete, e.g., in the waterfall software development model [1]. Also, projects that utilize

short development cycles (e.g. an agile development model [2]) will likely experience

less of such situations because they are not locked into a long-term development plan.

The escalation of requirements may be potentially valuable from a financial (business)

perspective: the implementation of an ER could have a positive revenue effect. However,

it can present difficulties from the management perspective. Reactive solutions lead to

schedule disruption, since possible solutions are: (1) to remove some requirements from

the plan so resources can be allocated to the ER, or (2) to increase the load on the

development team. These solutions inevitably affect morale and consume management’s

time. Software quality, project delivery date, and other factors may also be affected. Note

that the later a requirement gets escalated in the development cycle, the more difficult it

is to “squeeze” the requirement into the plan. The number of ERs may be fairly small,

compared to the whole set of requirements in the plan. However, injection of even a

single requirement can pose a challenge to the managers, depending on such factors as its

implementation complexity, resource consumption, release delays, etc. Therefore, a

proactive solution is desirable where requirements that would be escalated in the project

are predicted suitably ahead of time and appropriate measures taken in a preventative

manner.

ERs can be divided into two groups: (i) known requirements, i.e., those that were

previously elicited but not considered of high enough priority to include in the project

plan, and (ii) unknown requirements, i.e., those that were not known prior to their

escalation and, hence, are essentially entirely new requirements that were identified

during development. Based on the authors’ experience, roughly 20% of escalated

requirements are known requirements and 80% are unknown.

If a set of known requirements that could potentially escalate in the future were known in

advance, then the managers could meticulously examine these requirements, discuss them

151

with stakeholders and make a decision about adding these requirements to the plan in

advance. In the case of unknown requirements, an estimate of the number, size, and

potential source and time of an escalation of these requirements may help managers in

reserving the workforce needed to implement these requirements.

In this chapter, we propose potential approaches for forecasting the escalation of known

requirements and improving resource management for the escalation of unknown

requirements. This is an important practical problem, that is to the best of our knowledge,

has not been addressed in the literature. Section 7.2 discusses potential solution

approaches in detail, and Section 7.3 concludes the chapter.

7.2 Modeling the Escalation of Requirements
Before approving the addition of an ER to a development plan during the development

cycle, managers should consider certain dimensions (or factors) associated with this

requirement that will affect its prioritization. Certain dimensions, such as personal

preferences, business value, implementation cost and dependencies among requirements

[3], will be common to processes of prioritizing both normal and escalated requirements.

However, there exist prioritization dimensions that will be specific to either normal or

escalated requirements. For example, in the case of prioritization of normal requirements,

managers often consider requirement stability [4], legal mandate [5], and requirement

reuse. However, these dimensions are not utilized in prioritization of escalated

requirements. Prioritization of escalated requirements will also have specific dimensions,

such as requirements rigidity49, schedule risk50, and tradeoff risk51.

49 Can we implement only core features of a requirement in the current release and leave the rest for future
releases?
50 How far are we in the development phase?
51 What should be given up to absorb a given requirement into the plan?

152

In Section 7.2.1 we describe a potential approach for modeling escalations of known

requirements by simulating the evolution of prioritization dimensions. Section 7.2.2

considers the case of unknown escalated requirements by analyzing historical data on

escalation of requirements.

7.2.1 Modeling the Escalation of Known Requirements

Independent of dimensions used for prioritization (of both normal and escalated

requirements), we may depict the prioritization process (at a high level of abstraction) as

a procedure for splitting a set of requirements into two groups: in or out of the

development plan based on their relation to a (possibly n-dimensional) prioritization

threshold PT.

For example, we may prioritize requirements based on the complexity of integrating a

requirement into the product, and the business value. The two-dimensional prioritization

rule may then informally be defined as follows. If integration complexity is low and

business value is higher than $1M, then this requirement should be implemented.

Before we proceed, let us establish formal notation. Without loss of generality, we may

assume that the development process starts at time t0 and ends at time tS. Let us denote

values of prioritization dimensions (or, in short, priority) for j-th requirement at time t as

P(j,t). Clearly, P(j,t) may change with time. If P(j,t) exceeds PT before the end of the

current development cycle, the j-th requirement gets escalated into the current release.

Formally, the requirement becomes escalated if P(j,t) > PT and t < tS.

In order to assess the escalation risk of known requirements we need to follow the

following process

1. Tap into expert knowledge and analyze historical data on requirements

escalations.

2. Identify requirements likely to cross PT before the end of the current development

cycle.

153

3. Once requirements that can potentially escalate are identified -- sort them by

anticipated escalation-time: requirements that are expected to cross PT early in the

development cycle are less risky than those escalated late in the development

cycle.

• For the “early-crossers” (moderate cases): examine them for inclusion in

the development plan.

• For the “late-crossers” (riskier cases)52: during the requirements process,

analyze the stakeholders’ information on the likelihood of their escalation.

Note that for a sustained solution, requirement engineers need to examine the

requirements process as to "why" they were not considered for the plan in the first place.

If the "current" requirements process is considered satisfactory then, perhaps, it is time to

question this belief.

The first and third stages of the process are relatively straightforward. In order to

implement the second stage, let us examine a technique for modeling the stochastic

evolution of P(j,t) with time.

7.2.1.1 Modeling Evolution of Priority in Time

In order to model the evolution of a requirement’s importance with time, in general, we

will need the following input variables:

• Starting (current) value of the j-th requirement’s priority P(j,0),

• Target date values of the requirement’s priority at a future time (e.g., three

months, end of development, etc.) P(j,τ), τ >0,

• Dependencies that may trigger escalation of related requirements.

52 If the "current" requirements process is considered "optimal" then try to find innovative ways to improve
upon this "optimal" situation.

154

The starting value of a requirement’s importance and dependencies among requirements

are, usually, readily available. In order to obtain target date values we need to survey

stakeholders and experts on their opinions.

There exists numerous ways of running these types of surveys. In this paper, for the sake

of simplicity, we assume that at a future time instance tF the expected priority of the j-th

requirement P(j, tF) is estimated by averaging out experts’ opinions. Volatility of their

opinions is given by standard deviation of experts’ opinions V(j, tF). Let us assume that

the drift (growth trend) of requirements priority is linear53. We can then estimate an

average drift of P(j, t) per unit time as mj = (P(j, tF) - P(j, t0)) / (tF – t0).

P(j,t) should be modeled as a stochastic process, since it is in general impossible to

specify the priority value at some future time instance. Stochastic processes can take

different forms and parameters can be determined by analyzing data.

Consider the following example. Suppose that we prioritize requirements based on a

single prioritization dimension. By surveying experts, we determine that priority value of

the r-th requirement P(r, t) grows by two units of priority dimension per year and the

variance of this prognosis is equal to three (units)2 per year. Let us assume that we may

model the dynamics using Brownian motion [6]:

 () (), ,r rdP r t m dt s dW t= +

where mr and sr are constants, and W(t) is a Wiener process [6]. We can interpret mr as

the velocity of the deterministic drift and sr=V(r)1/2 captures the power of random

diffusion component. It turns out that the conditional probability distribution of P(r,t) at

time t + dt, given the priority value at time t is normal with mean P(r,t0) + mr dt and a

variance sr
2dt. In our case mr = 2 and sr= 31/2.

53 An actual form of the drift can be estimated from the collected data.

155

Dependencies among requirements can be modeled as follows: if the priority of a given

requirement reaches PT at time te, then all dependent requirements will also escalate at the

same time, i.e. their priority at time te will also be set to PT.

Let us put all the pieces of the model together and consider the following example.

Suppose we have six known requirements (R1, R2, … , R6), with dependencies given in

Figure 40. Escalation of R1 will trigger escalation of R2, R3 and R4; escalation of R5

will trigger escalation of R3 and so on. Our time horizon of interest tS = 6 month; we

perform 5000 Monte Carlo simulations with one week time steps. P(j,t) is one-

dimensional. Priority escalation threshold PT = 4. Initial priority of requirements P(j,t0) is

given in Table 21. We consider three cases with three different sets of initial Brownian

motion parameters, also given in Table 21.

R1

R2 R4

R3

R5

R6

Figure 40. Dependencies among requirements

Table 21. Setup parameters

Priority diffusion parameters (per year)
Case 1 Case 2 Case 3

Requirement
ID
(j)

Initial
Priority
P(j,t0) mj sj

2 mj sj
2 mj sj

2
R1 3.0 0.00 0.00 0.00 0.00 6.00 1.00
R2 2.5 6.00 0.00 6.00 2.00 6.00 2.00
R3 2.0 0.00 0.00 0.00 1.00 0.00 1.00
R4 1.5 0.00 0.00 0.00 0.00 2.00 0.00
R5 1.0 0.00 0.00 0.00 0.00 0.00 0.00
R6 0.5 2.00 0.00 2.00 0.00 2.00 0.00

156

In Case 1 the diffusion parameter sj is equal to zero for all j -- the system shows

deterministic linear growth, for those requirement where mj ≠ 0, and remains constant

otherwise. The evolution of requirements’ priority is given in Figure 41. For example, R6

grows at 2 priority units per year, and, therefore, in 6 months its priority rises from 0.5 to

1.5. R2 reaches IT in 3 months, and this triggers escalation of requirement R3 at the same

time.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.0
0

0.4
6

0.9
2

1.3
8

1.8
5

2.3
1

2.7
7

3.2
3

3.6
9

4.1
5

4.6
2

5.0
8

5.5
4

6.0
0

Time (month)

Pr
io

rit
y

1

2

3

4

5

6

Figure 41. Case 1. Expected priority

In Case 2 we add some randomness to the model -- sj is now non-zero for requirements

R2 and R3. The expected times of escalation (see Table 22) change as randomness

increase. As we can see from Figure 42, priority of R2 and R3 experience non-linear

growth.

157

Table 22. Expected escalation time

Expected escalation time (month) Requirement
ID
(j) Case1 Case 2 Case 3

R1 - - 2.31
R2 3.00 3.46 2.77
R3 3.00 4.85 3.46
R4 - - 4.38
R5 - - -
R6 - - -

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.0
0

0.4
6

0.9
2

1.3
8

1.8
5

2.3
1

2.7
7

3.2
3

3.6
9

4.1
5

4.6
2

5.0
8

5.5
4

6.0
0

Time (month)

Pr
io

rit
y

1

2

3

4

5

6

Figure 42. Case 2. Expected priority

In Case 3 we add positive drift to R1 and negative to R4. The evolution of requirements

priority is given in Figure 43, and expected escalation time is given in Table 22. Note that

the expected escalation time of R2 and R3 decreases due to the escalation of R1. Even

though R4 has negative drift, escalation of R1 “pushes” it to escalate too.

158

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.0
0

0.4
6

0.9
2

1.3
8

1.8
5

2.3
1

2.7
7

3.2
3

3.6
9

4.1
5

4.6
2

5.0
8

5.5
4

6.0
0

Time (month)

Pr
io

rit
y

1

2

3

4

5

6

Figure 43. Case 3. Expected priority

As we can see, this simple model can capture rather complicated relationships among

requirements. Once a table of expected escalation times is available, a requirements

engineer can analyze the data and decide what should be done with requirements that

may potentially escalate within the current development cycle.

Note that this model can be extended to multidimensional P(j,t). In this case we either

project different dimensions onto one, e.g., such as by taking a weighted average of

different dimensions, or by simulating the evolution of different dimensions using

multidimensional Brownian motion (or another stochastic process). Let us now consider

the escalation of unknown requirements.

7.2.1.2 Modeling the Escalation of Unknown Requirements

Forecasting the escalation of unknown requirements can be performed by analyzing

historical data on escalations. The following procedure should be performed:

159

1. Identify “trouble-making” clients, i.e., those that have injected requirements in the

past.

2. Estimate the number and complexity of requirements the identified clients (from

the step 1 above) have injected in the past54.

3. Expected time of injection can be obtained by looking at a client’s schedule –

injection typically happens during (or after) their elicitation phase.

Once these data are obtained you can estimate when and what amount of resources may

be needed and plan the load on development teams accordingly.

For example, if you identified that Client A injects 5±2 requirements every release and

the time required to implement each of those requirements is 100±50 human hours. The

client will start their next requirement elicitation 3 months from now. Your rough

estimate will be as follows: you will need 5×100 = 500 human hours on average; best55

scenario is 3×50 = 150 human/hours; and your worst case is 7×150 = 1050 human hours).

You may expect that you will need this labor force not earlier than 3 month from now. A

more complicated scrutiny, e.g. using time series analysis [7] can be performed if needed.

The above-described approach is most effective when the project is able to reserve

development effort for unknown requirements escalations. However, based on our

discussion with industrial contacts, this is not always possible. In industrial projects,

often the developers will be “overloaded” with tasks. There is then a need to provide a

contingency plan that is agreed to up-front for dealing with unknown requirement

escalations. This contingency plan could include deliberately planning not to implement a

few, lower-priority requirements until late in the development lifecycle. If and when

unknown escalations occur, these low-priority requirements can be de-scoped (i.e., their

54 The data may be normalized by the number of requirements implemented in previous releases of the
software.
55 The best scenario is no escalated requirements at all.

160

functionality reduced) or dropped altogether. The developers who were originally

assigned to work on these requirements would then be free to implement the newly

escalated requirements. The advantage of this contingency plan is that by planning this

early in the project, there would be no “floundering” on the part of management or

developers when escalations occur; the process would be set in place and understood by

the developers. Also, no development effort is wasted from partially implementing

requirements that are subsequently abandoned because higher-priority escalated

requirements are injected into development.

7.3 Conclusions and Future Work

In this chapter we describe quantitative models that can be used for managing injection of

requirements late in the software development process. In Section 7.2.1 we present a

stochastic model for escalation of previously elicited requirements prediction. Section

7.2.2 describes various approaches for managing resources for the escalation of new

requirements using historical data on escalations. In the future, we plan to validate these

models on industrial data sets of escalated requirements.

References
1. Royce, W.: Managing the Development of Large Software Systems. Proceedings

of IEEE WESCON, Vol. 26 (August) (1970) 1-9

2. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley (2001)

3. Davis, A.: The Art of Requirements Triage. IEEE Computer 36, 3 (2003) 42-49

4. Fellows, L., Hooks, I.: A Case for Priority Classifying Requirements. Proceedings
of 8th Annual International Symposium on Systems Engineering (1998)

5. Wiegers, K.E.: Karl Wiegers Describes 10 Requirements Traps to Avoid.
Software Testing & Quality Engineering Jan-Feb (2000)

6. Ross, S.M.: Introduction to Probability Models. Academic Press, San Diego
(2001)

7. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods Springer (1991)

161

Chapter 8

8 Conclusions and Future Work
We started the thesis with a basic overview of the Software Engineering discipline and

issues that it faces. We also described knowledge areas comprising this discipline. Next,

we presented six papers grouped by Software discipline. The papers built quantitative

models addressing various types of software risk. According to Hall [1], “software risk is

a measure of the likelihood and loss of an unsatisfactory outcome affecting the software

project, process, or product.” Software project risk deals with operational, organizational

and contractual aspects of the software development process. Examples of project risks

are resource constraints and relations with external suppliers. Software process risk

relates to management and technical processes. This risk is associated with activities such

as planning, staffing, and quality assurance in management procedures; and requirements

analysis, coding, and testing in technical procedures. Software product risk deals with the

product characteristics. This risk arises due to requirements volatility, code complexity,

incorrect test specifications, etc. Software project risk is the managers’ responsibility;

software product risk is handled mainly56 by technical staff. Software process risk is

mitigated by both managers and technical personnel.

In the first paper (Chapter 2) we proposed an iterative-unfolding technique for filtering a

set of traces relevant to a specific task. This technique can be used to support non-

scalable trace analysis tools used in software testing and maintenance leading to

improved product quality and faster problem determination. We also presented a

validation case study, based on industrial data, proving scalability of this approach.

56 Product managers are also responsible for handling some aspects of product risk, such as requirements
volatility.

162

In the second paper (Chapter 3) we analyzed the applicability both of the Shannon

entropy and the three extended entropies (Landsberg-Vedral, Rényi, and Tsallis) to the

predictive classification of traces (either stand-alone or as part of the iterative-unfolding

process) described in the previous paper. Our validating case study showed promising

performance of the extended entropies for classification task.

The first and second papers, dealt with the product and process risks. The techniques that

we proposed in these papers can speed up problem determination of defects encountered

by customers, leading to a decrease of lost opportunities by increasing customer

satisfaction (due to faster problem resolution). Faster problem resolution also leads to

easing of resource constraints, decreasing project risk.

In the third paper (Chapter 4) we used mathematical tools such as heavy-tail Kappa

distribution and G/M/k queuing model to develop a set of metrics helping to identify gaps

in quality assurance processes (addressing process risk), to allocate resources of service

and maintenance teams (decreasing project and process risks), and to help customers to

asses risk associated with usage of a given software product (improving customer

relations and opening new opportunities). We validated the metrics using industrial data.

In the fourth paper (Chapter 5) we proposed a technique for selection and prioritization of

a minimal set of customers for profiling. The minimal set of customers has been

identified using Binary Integer Programming algorithm; this set was later prioritized

using a greedy heuristics. We also presented a validation case study, based on industrial

data, showing that this approach is scalable and can produce usable results for a product

with a large customer base. Input data from customers identified using this algorithm

should improve code coverage by targeting problematic functionality frequently utilized

by the users, leading to improved test specifications (decrease of product risk). Analysis

of customer workloads also helps analysts to better comprehend user behavior, resulting

in clearer quality assurance policies with a concomitant decrease of the process risk.

163

In the fifth paper (Chapter 6) we established a model combining Boolean networks and

stochastic processes. This model described the interaction between requirements and

underlying assumptions in the context of system validity. This proof-of-concept model

simulated the effect of external changes on the validity of a software system over time.

The thesis is concluded with the sixth paper (Chapter 7), where we described quantitative

models that simulated the injection of requirements late in the software development

process. We presented a stochastic model for prediction of escalation of previously

elicited requirements and described approaches for managing resources for the escalation

of new requirements using historical data on escalations.

The fifth and sixth paper, similar to the first and second papers, dealt mainly with product

and process risks, helping to proactively identify changes in existing requirements and

potential injection of new ones. This decreased uncertainty of planning and staffing

processes. Such information, if obtained early in the development cycle, can help

decrease project risk by highlighting potential resource constraints.

Software Engineering remains a relatively new field with broad scope for quantitative

methodological work as well as the development of quantitative concepts. This thesis

plays a role in injecting some of these elements into the field, but many open questions

remain to which methods such as those developed here will prove invaluable.

For example, identifying problematic requirements early in the development cycle,

improving automatic identification of rediscovered defects and, finally, determining early

signs of product quality deterioration and deriving actions needed to restore the quality.

We are looking forward to making continued contributions to these challenging and

societally important problems.

References
[1] E. M. Hall, Managing Risk: Methods for Software Systems Development.

Addison-Wesley Professional, 1998.

164

165

Curriculum Vitae
Name: Andriy Miranskyy

Post-secondary The University of Western Ontario
Education and London, Ontario, Canada
Degrees: 2004-2011 Ph.D.

The University of Western Ontario
London, Ontario, Canada
2002-2004 M.Sc.

National Technical University
Kiev, Ukraine
1998-2001 Specialist

National University
Kiev, Ukraine
1995-1998 B.Sc.

Honours and IBM Tech Connect 2009: Judge’s Pick Award
Awards: 2009

MITACS Student Awards Program for Outstanding Service
to the Student Network
2009

CasCon Best Student Paper Award
2008

IBM First Patent Application Invention Achievement Award
2007

IBM Ph.D. Fellowship Award
2006-2008

University of Western Ontario
Graduate Teaching & Research Assistantship
International Graduate Student Scholarship
2002-2007

166

Related Work DB2 QA Developer and Analyst
Experience IBM Canada Ltd.

2008-2011

Teaching Assistant
The University of Western Ontario
2002-2008

Sales Manager
Givaudan SA
2000-2002

Software Developer
F. Hoffmann - La Roche Ltd.
1998-2002

Service Communication Officer
 Executive Committee, Networks of Centers of Excellence

Trainee Association (NCETA), http://www.nce.gc.ca
2006-2008

Ontario Representative, NCETA liason
Student Advisory Committee, Mathematics of Information
Technology and Complex Systems (MITACS) Network of Centers
of Excellence, http://www.mitacs.ca
2006-2008

Councilor
Society of Graduate Students, The University of Western Ontario
2005-2006

Professional Co-chair of the “Quality, the Critical Evolution for Software
Activities Development Education, Business, User Satisfaction and Career

Success in the 21st Century” workshop held at CASCON 2006
Conference, Toronto, Canada

List of Refereed Publications
A.V. Miranskyy, M. Davison, M. Reesor, and S.S. Murtaza: Using entropy measures for
comparison of software traces, submitted to Information Sciences

B. Caglayan, A. Tosun, A.V. Miranskyy, A. Bener, and N. Ruffolo. Understanding the
Explanatory Power of a Defect Prediction Model For Different Defect Categories,
International Journal of Empirical Software Engineering, (2011) (Accepted)

167

Z. Li, N.H. Madhavji, S.S. Murtaza, M. Gittens, A.V. Miranskyy, D. Godwin, and E.
Cialini. Characteristics of multiple-component defects and architectural hotspots: A large
system case study. International Journal of Empirical Software Engineering, (2011)
(Accepted)

A. Tosun, B. Caglayan, A.V. Miranskyy, A. Bener, and N. Ruffolo, Different Strokes for
Different Folks: A Case Study on Software Metrics for Different Defect Categories,
Second International Workshop on Emerging Trends in Software Metrics
(WeTSOM’11), (2011) (Accepted)

B. Caglayan, A. Tosun, A.V. Miranskyy, A. Bener, and N. Ruffolo. Usage of multiple
prediction models based on defect categories. In Proceedings of the 6th International
Conference on Predictive Models in Software Engineering (PROMISE '10). Article 8,
DOI=10.1145/1868328.1868341 (2010), 9 pages

Z. Li, M. Gittens, S.S. Murtaza, N.H. Madhavji, A.V. Miranskyy, D. Godwin, and E.
Cialini, Analysis of pervasive multiple-component defects in a large software system. In
Proceedings of the 25th IEEE Int'l Conference on Software Maintenance (ICSM'09),
(2009), 265-273

A.V. Miranskyy, E. Cialini, and D. Godwin. Selection of customers for operational and
usage profiling. In Proceedings of the Second International Workshop on Testing
Database Systems (DBTest '09). Article 7, DOI=10.1145/1594156.1594165 (2009), 6
pages

A.V. Miranskyy, N.H. Madhavji, M.S. Gittens, M. Davison, M. Wilding, and D. Godwin,
C.A. Taylor, SIFT: A Scalable Iterative-Unfolding Technique for Filtering Execution
Traces, In Proceedings of the 2008 Conference of the Center For Advanced Studies on
Collaborative Research: Meeting of Minds (CASCON '08),
DOI=10.1145/1463788.1463817 (2008), 15 pages

C. A. Taylor, M. S. Gittens, and A.V. Miranskyy, A case study in database reliability:
component types, usage profiles, and testing. In Proceedings of the first international
Workshop on Testing Database Systems (DBTest '08), Article 11,
DOI=10.1145/1385269.1385283 (2008), 6 pages

A.V. Miranskyy, N.H. Madhavji, R. Ferrari, S. Ghobrial, C.D. Giaraffa, Q.A. Rahman,
Requirements Escalation, in Proceedings of the Workshop on Measuring Requirements
for Project and Product Success (MeReP), November 2007, http://www-
swe.informatik.uni-heidelberg.de/home/events/MeReP.htm

M. Gittens, D. Godwin, E. Cialini, A. Miranskyy, M. Wilding, C. Taylor, Reality-based
QA, a story of software profiling success, in Proceedings of the IBM (refereed)
Conference on Software Engineering for Tomorrow (SWEFT-2007). IBM T.J Watson
Centre New York, USA. October, 2007

168

A.V. Miranskyy, M.S. Gittens, N.H. Madhavji, C.A. Taylor, Usage of Long Execution
Sequences for Test Case Prioritization, To appear in the Fast Abstracts of the 18th IEEE
International Symposium of Software Reliability Engineering, 2007

A.V. Miranskyy, N.H. Madhavji, M.S. Gittens, M. Davison, M. Wilding, D. Godwin, An
Iterative, Multi-Level, and Scalable Approach to Comparing Execution Traces, in
Proceedings of the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
(2007), 537-540

A. Miranskyy, N. Madhavji Managing Requirements Invalidity Risk, in Proceedings of
Workshop on the Interplay of Requirements Engineering and Project Management in
Software Projects (REProMan), (2005)

A. Miranskyy, N. Madhavji, M. Davison, M. Reesor, Modelling assumptions and
requirements in the context of project risk, in Proceedings of the 13th IEEE International
Conference on Requirements Engineering, (2005), 471-472

O.M. Rozhmanova, E.V. Dolgaya, L.N. Stelmakh, S.V. Vasilovskaja, I.A. Votjakova,
N.A. Kudrja, A.V. Miranskyy, I.S. Magura, Effect of interferon-α2b on the cells of
human embryonic nerve tissue in neurogenesis, Neurophysiology 36 (2004), no. 5-6,
319-324.

O.M. Rozhmanova, E.V. Dolgaya, L.N. Stelmakh, N.Kh. Pogorelaya, V.V. Kucher, A.V.
Miranskyy, I.S. Magura, G.Kh. Matsuka, Sodium transport in the human neuroblastoma
cells during early phase of differentiation with recombinant interferon-α2b (laferon),
Biopolymers and cell, 16 (2000), no. 6, 540-546, in Russian.

E.V. Dolgaya, O.M. Rozhmanova, L.N. Stelmakh, A.V. Miranskyy, Yu.I. Kudryavets
Effects of interferon-α/β on Ca2+ influx and binding in murine thymocites, Biopolymers
and cell, 16 (2000), no. 3, 225-228, in Russian.

A.V. Miranskyy and A.I. Shapiro, Frozen pool, Quant (Scientific popular physical and
mathematical journal), (1995), no. 4, 46-47, in Russian.

Non-Refereed Publications

A.V. Miranskyy, E. Cialini, and D. Godwin, Selection of Customers for Operational and
Usage Profiling, IPCOM 000203574D, (2011)

A.V. Miranskyy, M. Davison, M. Reesor, S.S. Murtaza, Using entropy measures for
comparison of software traces, CoRR abs/1010.5537, (2010)

A.V. Miranskyy and D. Godwin, Trend change analysis using inflection points detection,
IPCOM 000177081D, (2008)

169

A.V. Miranskyy, N.H. Madhavji, R. Ferrari, S. Ghobrial, C. D. Giaraffa, Q.A. Rahman,
Managing Requirements Escalation, TR-74.210, IBM Center for Advanced Studies
(CAS), Toronto, (2007). Also available as Technical Report #706, Department of
Computer Science, University of Western Ontario, Canada.

A.V. Miranskyy, N.H. Madhavji, M.S. Gittens, M. Davison, M. Wilding, and D. Godwin,
An Iterative, Multi-Level, and Scalable Approach to Comparing Execution Traces, TR-
74.209, IBM Center for Advanced Studies (CAS), Toronto, (2007),
https://www.ibm.com/ibm/cas/publications/index.shtml. Also available as Technical
Report #686, Department of Computer Science, University of Western Ontario, Canada.

A. Miranskyy, N. Madhavji, M. Davison, M. Reesor, Modelling assumptions and
requirements in the context of project risk, Technical Report #645, Department of
Computer Science, University of Western Ontario, Canada (2005).

A. Miranskyy, Pricing Defaultable Bonds and Options in a CIR Risk & Default
Framework, M.Sc. thesis, University of Western Ontario (2004).

Posters And Demos

A.V. Miranskyy, M. Gittens, N. Madhavji, C. Taylor, M. Wilding, D. Godwin, Usage of
Long Execution Sequences for Test Case Prioritization, CASCON 2007, Toronto, ON,
Canada, (2007)

A.V. Miranskyy, N.H. Madhavji, M.S. Gittens, M. Davison, M. Wilding, and D. Godwin,
An Iterative, Multi-Level, and Scalable Approach to Comparing Execution Traces, the
6th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, 2007

A.V. Miranskyy, N.H. Madhavji, M.S. Gittens, M. Davison, M. Wilding, and D. Godwin,
An Iterative, Multi-Level, and Scalable Approach to Comparing Execution Traces,
MITACS 2007, Winnipeg, MB, Canada, (2007)

A.V. Miranskyy, N.H. Madhavji, M.S. Gittens, M. Davison, M. Wilding, and D. Godwin,
Test coverage analysis, CASCON 2006, Toronto, ON, Canada, (2006)

A. Miranskyy, N. Madhavji, M. Davison, M. Reesor, Modelling assumptions and
requirements in the context of project risk, 13th IEEE International Conference on
Requirements Engineering, Paris, France, (2005)

A. Miranskyy, N. Madhavji, M. Davison, M. Reesor, Modelling assumptions and
requirements in the context of project risk, MITACS 2005, Calgary, AB, Canada, (2005)

170

Patents

A.V. Miranskyy, D. Godwin, E.Cialini, A technique for estimation of confidence interval
for probability of defect rediscovery, United States Patent & Trademark Office's
Application, (2009)

M. Davison, M.S. Gittens, D. Godwin, N.H. Madhavji, A. Miranskyy, and M. Wilding,
“Computer Software Test Coverage Analysis”, United States Patent & Trademark
Office's Patent # 7793267, (2006)

Presentations

“Selection of customers for operational and usage profiling”, DBTest’09, Rhode Island,
USA, (2009)

“Profiling, from the Bottom Up”, Workshop on Software Success: a Sum of Customer
Details, CASCON 2007, Toronto, Canada, (2007)

“A User-Centered Approach to Improving System Testing”, University of Western
Ontario Research in Computer Science Conference, UWORCS, (2006)

“Managing the Requirements Lifecycle”, Workshop on Software Requirements for
Large-Scale Development Projects, CASCON 2005, Toronto, Canada

“The Reality of Defect Prediction Models”, Workshop on Quality-Based Process and
Cost-Effective Project Management, CASCON 2005, Toronto, Canada

“Efficient algorithm for computing quantiles of the noncentral chi-squared distribution”,
MITACS NCE Risk & Finance - Theme Meeting, University of Calgary, Calgary, AB,
(2005)

	CERTIFICATE OF EXAMINATION
	Co-Authorship Statement
	Acknowledgments
	Dictionary and Abbreviations
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Outline
	References

	2 SIFT: A Scalable Iterative-Unfolding Technique for Filtering Execution Traces
	2.1 Introduction
	2.2 Related Work
	2.3 Method Description
	2.3.1 The Iterative-Unfolding Approach
	2.3.2 Algorithms
	2.3.2.1 Core Algorithms: Fingerprints, Processes, and Traces
	2.3.2.1.1 Fingerprints
	2.3.2.1.2 Algorithm for Comparing a Pair of Processes

	Example 1.
	2.3.2.1.3 Algorithm for Comparing a Pair of Traces
	2.3.2.1.4 The Overall Approach

	2.3.2.2 The Iterative-Unfolding Algorithms

	2.4 Analysis
	2.4.1 Efficiency
	2.4.1.1 Core Algorithms Efficiency
	2.4.1.2 Special Cases

	2.4.2 Method Accuracy
	2.4.3 Iteration-unfolding overheads

	2.5 Implementation
	2.6 Validation Case Study
	2.7 Conclusion And Future Work
	References

	3 Using Entropy Measures for Comparison of Software Traces
	3.1 Introduction
	3.2 Entropies and Traces: definitions
	3.2.1 Extraction of probability of events from traces
	3.2.2 Entropies and traces

	3.3 Usage of entropies for classification of traces
	3.3.1 Measure of distance between a pair of traces
	3.3.2 Trace-ranking algorithm
	3.3.2.1 Traces ranking algorithm: example

	3.3.3 Traces ranking algorithm: efficiency
	3.3.4 Entropies as fingerprints: drawback

	3.4 Validation case study
	3.4.1 Analysis of individual entropies
	3.4.2 Analysis of the complete set of entropies

	3.5 Summary
	References
	3.6 Appendix: Approximation of Equation

	4 Metrics of Risk Associated with Defects Rediscovery
	4.1 Introduction
	4.2 Related Research
	4.3 Metrics of Risk
	4.3.1 Metrics Application
	4.3.1.1 Support and Maintenance Teams
	4.3.1.2 Quality Assurance Team
	4.3.1.3 Customers

	4.3.2 Formulation of Metrics

	4.4 Case Study
	4.4.1 Finding a Suitable Distribution
	4.4.2 Application of the Metrics
	4.4.2.1 Analysis of Software Quality
	4.4.2.2 Resource Allocation

	4.4.3 Threats to Validity

	4.5 Conclusions
	References

	5 Selection of Customers for Operational and Usage Profiling
	5.1 Introduction
	5.2 Related Work
	5.3 Qualitative Analysis Of Customers
	5.4 CUSTOMER SELECTION TECHNIQUE
	5.4.1 Minimization of Customer Set
	5.4.1.1 Example of Selection of the Minimal Set of Customers for Profiling

	5.4.2 Prioritization of Customers within the Minimal Set
	5.4.2.1 Example of Prioritization of Customers within the Minimal Set of Customers for Profiling

	5.5 Validation Case Study
	5.5.1 Exploratory Analysis
	5.5.2 Selection of the Minimal Set of Customers

	5.6 Summary
	References

	6 Modelling Assumptions and Requirements in the Context of Project Risk
	6.1 Introduction
	6.2 Related work
	6.3 Requirements & Assumptions
	6.3.1 Assumptions Formalization
	6.3.2 Requirements Formalization
	6.3.3 Requirements & Assumptions Interaction

	6.4 Modelling tools
	6.4.1 Boolean network
	6.4.2 Modelling Event Arrival
	6.4.2.1 Modelling Incorrect Elicitation
	6.4.2.2 Modelling Requirement Importance
	6.4.2.3 Modelling Validity Change

	6.5 Predicting risk at time t
	6.5.1 Risk metrics
	6.5.2 Single-run Algorithm: System State at Final Time
	6.5.3 Multiple-runs Algorithm: System State at Final Time

	6.6 Simulation Example
	6.7 Conclusions & Future Work
	References

	7 Managing the Escalation of Requirements
	7.1 Introduction
	7.2 Modeling the Escalation of Requirements
	7.2.1 Modeling the Escalation of Known Requirements
	7.2.1.1 Modeling Evolution of Priority in Time
	7.2.1.2 Modeling the Escalation of Unknown Requirements

	References

	8 Conclusions and Future Work
	References

	Curriculum Vitae

