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Abstract 

The field of Software Engineering (SE) is the study of systematic and quantifiable 

approaches to software development, operation, and maintenance. This thesis presents a 

set of scalable and easily implemented techniques for quantifying and mitigating risks 

associated with the SE process. The thesis comprises six papers corresponding to SE 

knowledge areas such as software requirements, testing, and management. The 

techniques for risk management are drawn from stochastic modeling and operational 

research. 

The first two papers relate to software testing and maintenance. The first paper describes 

and validates novel iterative-unfolding technique for filtering a set of execution traces 

relevant to a specific task. The second paper analyzes and validates the applicability of 

some entropy measures to the trace classification described in the previous paper. The 

techniques in these two papers can speed up problem determination of defects 

encountered by customers, leading to improved organizational response and thus 

increased customer satisfaction and to easing of resource constraints. 

The third and fourth papers are applicable to maintenance, overall software quality and 

SE management. The third paper uses Extreme Value Theory and Queuing Theory tools 

to derive and validate metrics based on defect rediscovery data. The metrics can aid the 

allocation of resources to service and maintenance teams, highlight gaps in quality 

assurance processes, and help assess the risk of using a given software product. The 

fourth paper characterizes and validates a technique for automatic selection and 

prioritization of a minimal set of customers for profiling. The minimal set is obtained 

using Binary Integer Programming and prioritized using a greedy heuristic. Profiling the 

resulting customer set leads to enhanced comprehension of user behaviour, leading to 

improved test specifications and clearer quality assurance policies, hence reducing risks 

associated with unsatisfactory product quality.  
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The fifth and sixth papers pertain to software requirements. The fifth paper both models 

the relation between requirements and their underlying assumptions and measures the 

risk associated with failure of the assumptions using Boolean networks and stochastic 

modeling. The sixth paper models the risk associated with injection of requirements late 

in development cycle with the help of stochastic processes. 

Keywords 

software engineering, risk, execution trace, entropy, defect rediscovery, extreme value 

theory, Kappa distribution, G/M/k queue, binary integer programming, customer 

profiling, escalated requirement, assumption, stochastic modeling, Boolean network 
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Dictionary and Abbreviations 

• BIP = Binary Integer Programming method. 

• Fat tailed (heavy-tailed) distribution is a probability distribution having 

kurtosis > 3. A fat tailed random variable takes on extreme values more often than 

a normal distribution with the same mean and variance. 

• G/M/k is a queue in which the inter-arrival time of requests are independent and 

identically distributed (iid) random variables from a general distribution, G, the 

service times are iid exponential random variables and k servers operate 

independently. 

• M/M/k is a queue in which the inter-arrival time of requests are iid random 

variables from an exponential distribution, the service times are iid exponential 

random variables and k servers operate independently. 

• Program execution trace is a sequential log of pertinent information captured 

during any particular run of software. 

• Software defect is a fault in a computer program that produces an unexpected 

result or causes the program to behave in an unintended manner. 

 



 

 viii

Table of Contents 

CERTIFICATE OF EXAMINATION ........................................................................... ii 

Co-Authorship Statement.................................................................................................... v 

Acknowledgments.............................................................................................................. vi 

Dictionary and Abbreviations ........................................................................................... vii 

Table of Contents.............................................................................................................viii 

List of Tables ................................................................................................................... xiii 

List of Figures ................................................................................................................... xv 

Chapter 1............................................................................................................................. 1 

1 Introduction.................................................................................................................... 1 

1.1 Outline..................................................................................................................... 5 

References ...................................................................................................................... 8 

Chapter 2........................................................................................................................... 10 

2 SIFT: A Scalable Iterative-Unfolding Technique for Filtering Execution Traces....... 10 

2.1 Introduction........................................................................................................... 10 

2.2 Related Work ........................................................................................................ 14 

2.3 Method Description .............................................................................................. 17 

2.3.1 The Iterative-Unfolding Approach ........................................................... 17 

2.3.2 Algorithms ................................................................................................ 18 

2.4 Analysis................................................................................................................. 28 

2.4.1 Efficiency.................................................................................................. 28 

2.4.2 Method Accuracy...................................................................................... 32 

2.4.3 Iteration-unfolding overheads................................................................... 33 



 

 ix

2.5 Implementation ..................................................................................................... 34 

2.6 Validation Case Study........................................................................................... 35 

2.7 Conclusion And Future Work............................................................................... 42 

References .................................................................................................................... 43 

Chapter 3........................................................................................................................... 46 

3 Using Entropy Measures for Comparison of Software Traces .................................... 46 

3.1 Introduction........................................................................................................... 46 

3.2 Entropies and Traces: definitions.......................................................................... 50 

3.2.1 Extraction of probability of events from traces ........................................ 50 

3.2.2 Entropies and traces .................................................................................. 51 

3.3 Usage of entropies for classification of traces ...................................................... 52 

3.3.1 Measure of distance between a pair of traces ........................................... 54 

3.3.2 Trace-ranking algorithm ........................................................................... 55 

3.3.3 Traces ranking algorithm: efficiency ........................................................ 57 

3.3.4 Entropies as fingerprints: drawback.......................................................... 58 

3.4 Validation case study ............................................................................................ 58 

3.4.1 Analysis of individual entropies ............................................................... 61 

3.4.2 Analysis of the complete set of entropies ................................................. 68 

3.5 Summary ............................................................................................................... 69 

References .................................................................................................................... 70 

3.6 Appendix: Approximation of Equation (3.8)........................................................ 72 

Chapter 4........................................................................................................................... 74 

4 Metrics of Risk Associated with Defects Rediscovery ................................................ 74 

4.1 Introduction........................................................................................................... 74 



 

 x

4.2 Related Research................................................................................................... 76 

4.3 Metrics of Risk...................................................................................................... 77 

4.3.1 Metrics Application .................................................................................. 77 

4.3.2 Formulation of Metrics ............................................................................. 80 

4.4 Case Study ............................................................................................................ 86 

4.4.1 Finding a Suitable Distribution................................................................. 89 

4.4.2 Application of the Metrics ........................................................................ 95 

4.4.3 Threats to Validity .................................................................................. 102 

4.5 Conclusions......................................................................................................... 103 

References .................................................................................................................. 103 

Chapter 5......................................................................................................................... 105 

5 Selection of Customers for Operational and Usage Profiling.................................... 105 

5.1 Introduction......................................................................................................... 105 

5.2 Related Work ...................................................................................................... 108 

5.3 Qualitative Analysis Of Customers .................................................................... 108 

5.4 CUSTOMER SELECTION TECHNIQUE ........................................................ 110 

5.4.1 Minimization of Customer Set................................................................ 110 

5.4.2 Prioritization of Customers within the Minimal Set ............................... 113 

5.5 Validation Case Study......................................................................................... 114 

5.5.1 Exploratory Analysis .............................................................................. 114 

5.5.2 Selection of the Minimal Set of Customers ............................................ 115 

5.6 Summary ............................................................................................................. 118 

References .................................................................................................................. 118 

Chapter 6......................................................................................................................... 120 



 

 xi

6 Modelling Assumptions and Requirements in the Context of Project Risk .............. 120 

6.1 Introduction......................................................................................................... 120 

6.2 Related work ....................................................................................................... 123 

6.3 Requirements & Assumptions ............................................................................ 125 

6.3.1 Assumptions Formalization .................................................................... 125 

6.3.2 Requirements Formalization................................................................... 127 

6.3.3 Requirements & Assumptions Interaction .............................................. 128 

6.4 Modelling tools ................................................................................................... 129 

6.4.1 Boolean network ..................................................................................... 130 

6.4.2 Modelling Event Arrival ......................................................................... 131 

6.5 Predicting risk at time t ....................................................................................... 135 

6.5.1 Risk metrics ............................................................................................ 135 

6.5.2 Single-run Algorithm: System State at Final Time................................. 137 

6.5.3 Multiple-runs Algorithm: System State at Final Time ........................... 139 

6.6 Simulation Example............................................................................................ 140 

6.7 Conclusions & Future Work ............................................................................... 146 

References .................................................................................................................. 146 

Chapter 7......................................................................................................................... 149 

7 Managing the Escalation of Requirements ................................................................ 149 

7.1 Introduction......................................................................................................... 149 

7.2 Modeling the Escalation of Requirements.......................................................... 151 

7.2.1 Modeling the Escalation of Known Requirements ................................. 152 

7.3 Conclusions and Future Work ............................................................................ 160 

References .................................................................................................................. 160 



 

 xii

Chapter 8......................................................................................................................... 161 

8 Conclusions and Future Work.................................................................................... 161 

References .................................................................................................................. 163 

Curriculum Vitae ............................................................................................................ 165 



 

 xiii

List of Tables 

Table 1. Papers: summary information............................................................................... 6 

Table 2. Applicability of the papers to software development phases (X marks applicable 

area)..................................................................................................................................... 6 

Table 3. Descriptive statistics of traces............................................................................. 36 

Table 4. Dictionaries of a trace given in Figure 11........................................................... 51 

Table 5. Example: Relation between traces and defects................................................... 56 

Table 6. Example: Traces sorted by distance and ranked................................................. 57 

Table 7. Example: Top 1-4 defects ................................................................................... 57 

Table 8. Descriptive statistics of length of traces ............................................................. 60 

Table 9. Fraction of correctly classified traces in Top X  for 1) [ ]( ; , );EH t l c qα  with 

( , , )E L R T∈ , 5 4(10 ,10 )q − −∈ , = 3l , and =c FDT , and 2) set of entropies Λ ; based on 

10-fold cross validation. Average fraction of correctly classified traces in 10 folds is 

denoted by “Avg.”; plus-minus 95%  confidence interval denoted by “95% CI”. ........... 65 

Table 10. Percent of correctly classified traces in Top X  for [ ]( ; , );EH t l c qα , =E L , 

= 3l , and 4 5= {10 ,10 }q − − ................................................................................................ 67 

Table 11. AIC.................................................................................................................... 90 

Table 12. Values of variables............................................................................................ 93 

Table 13. Results of the G/M/k model for v.4, second year. .......................................... 102 

Table 14. Customer prioritization criteria....................................................................... 110 



 

 xiv

Table 15: Example. Defects’ discovery .......................................................................... 113 

Table 16. Percentage of the total number of customers needed to cover X% of defects 

discovered at least Y times .............................................................................................. 117 

Table 17. Example 4.1. State changes of assumptions. .................................................. 132 

Table 18. Assumptions properties................................................................................... 142 

Table 19. Requirements properties ................................................................................. 142 

Table 20. Metrics values at = 1fT  (± denotes standard deviation) ................................ 145 

Table 21. Setup parameters............................................................................................. 155 

Table 22. Expected escalation time ................................................................................ 157 

 



 

 xv

List of Figures 

Figure 1. An example of a trace........................................................................................ 11 

Figure 2. Algorithm for comparing two processes ........................................................... 21 

Figure 3. Comparison of two uncompressed processes. Upper dashes depict functionality 

present only in Process 1; lower dashes – functionality present only in Process 2; no 

dashes – common functionality. ....................................................................................... 22 

Figure 4. Algorithm for measuring distance between traces. ........................................... 25 

Figure 5. Algorithm for comparing a single trace t against a set of traces S. ................... 27 

Figure 6. Algorithm for comparing traces within a given set S. ....................................... 31 

Figure 7. Timing of comparing a trace against a set of traces; timing for each draw is 

denoted by circles; values are plotted on the left axis. Solid line shows the number of 

comparisons in the lower pattern; dotted line in the upper pattern; values of both lines are 

plotted on the right vertical axis........................................................................................ 38 

Figure 8. Timing of comparing traces within a given set ................................................. 39 

Figure 9. Number of traces remaining after each iteration of comparing traces within a 

given set ............................................................................................................................ 39 

Figure 10. Predicted time (dotted lines represent 95% confidence bands) for (a) P1(t,S) − 

linear, and (b) P2(S) − quadratic, based on extrapolation of the fitted regression. ........... 41 

Figure 11. An example of a trace...................................................................................... 46 

Figure 12. Distribution of the number of traces per defect (version) ............................... 60 

Figure 13. Dictionary size for various values of l  and c ................................................. 61 



 

 xvi

Figure 14. Interpolated average fractions of correctly classified traces in Top 5 (based on 

10-fold cross validation) for =E L  and =c FDT . for different values of l  and q . ...... 63 

Figure 15. Fraction of correctly classified traces in Top 5 for =E L , = 3l , 5= 10q − , and 

=c FDT . Solid line shows the average fraction of correctly classified traces in 10 folds; 

dotted line shows pointwise 95%  confidence interval (95% CI) of the average. ............ 64 

Figure 16. Average fraction of correctly classified traces in Top 5 for various values of l ; 

=E L , 5 0 2(0,10 ,10 ,10 )q −∈ , =c FDT ............................................................................ 66 

Figure 17. Average fraction of correctly classified traces in Top 5 for various values of 

q ; =E L , (1,3,7)l ∈ ,  = c FDT ...................................................................................... 68 

Figure 18. N(t): total number of defects discovered up to time t. ..................................... 87 

Figure 19. R(0,t): total number of rediscoveries up to time t............................................ 88 

Figure 20. L-moments ratio diagram of Di  for all releases per year (years 1 – 5). The 

hollow circles denote each of the yearly datasets of Di. The diagram shows the fits of the 

following distributions: Exponential (EXP), Normal (NOR), Gamma (GUM), Rayleigh 

(RAY), Uniform (UNI), Generalized Extreme Value (GEV), Generalized Logistic 

(GLO), Generalized Normal (GNO), Generalized Pareto (GPA), generalization of the 

Power Law, Pearson Type III (PE3), and Kappa (KAP). Kappa distribution applicability 

space is a plane bounded by GLO distribution line above and the “Theoretical limits” line 

below and is not shown on the legend. Based on this figure, Kappa distirbution is the only 

one that is applicable to modeling each of the datasets. ................................................... 90 

Figure 21. QQ plot of the empirical vs. PE3 distributions’ quantiles............................... 91 

Figure 22. QQ plot of the empirical vs. KAP distributions’ quantiles. ............................ 91 

Figure 23. QQ plot of the empirical vs. Compound distributions’ quantiles.................... 94 



 

 xvii

Figure 24. Plot of the empirical cdf vs. Compound Kappa distribution theoretic cdf. ..... 95 

Figure 25. M1: expected number of defects rediscovered more than d times during the 2nd 

year after GA date............................................................................................................. 96 

Figure 26. M3: expected total number of rediscoveries for defects with number of 

rediscoveries above d during the 2nd year after GA date. ................................................. 98 

Figure 27. M5: probability that the total number of rediscoveries will not exceed L during 

the 2nd year after GA date. ................................................................................................ 99 

Figure 28. Estimate that the total number of rediscoveries will not exceed M6 with 

confidence level α........................................................................................................... 100 

Figure 29. Density of requests inter-arrival times for v.4, second year.......................... 101 

Figure 30. Total number of discovered defects vs. average number of rediscoveries per 

customer. Dotted lines depict borders of quadrants described in Table 14. ................... 115 

Figure 31. Percentage of the total number of customers needed to cover a certain 

percentage of defects of interest. .................................................................................... 116 

Figure 32. Percentage of the total number of customers needed to cover a certain 

percentage of defects of interest (log-scale). .................................................................. 117 

Figure 33. Example 4.1. Set up of assumptions for a. Configuration I; b. Configuration II. 

Solid arrows denote standard relationship, dotted arrows denote key relationship. ....... 131 

Figure 34. Example 4.2. Five random realizations of ( , )I r t ......................................... 134 

Figure 35. Simulation setup. Circles denote assumptions, squares denote requirements. 

Solid arrows denote standard relationship, dotted arrows denote key relationship. ....... 141 

Figure 36. The value of ˆ( , )V t⋅ ........................................................................................ 143 



 

 xviii

Figure 37. The value of ˆ ( , )C t⋅ ........................................................................................ 144 

Figure 38. The value of ˆ ( , )U t⋅ ........................................................................................ 144 

Figure 39. The value of ˆ( , )I t⋅ ......................................................................................... 145 

Figure 40. Dependencies among requirements............................................................... 155 

Figure 41. Case 1. Expected priority .............................................................................. 156 

Figure 42. Case 2. Expected priority .............................................................................. 157 

Figure 43. Case 3. Expected priority .............................................................................. 158 



 

 

1

Chapter 1   

1 Introduction 
In this section, we give a brief exposition to the field of software engineering and the 

challenges faced in the field. The term “Software Engineering”, and the engineering 

subfield it describes, was coined in 1968 at the NATO Software Engineering Conference 

[1]. The IEEE Computer Society Software Engineering Body of Knowledge defines 

software engineering as:  

“(1) The application of a systematic, disciplined, quantifiable approach to the 

development, operation, and maintenance of software; that is, the application of 

engineering to software. (2) The study of approaches as in (1)” [2]. 

This discipline was created to address the “software crisis” increasingly apparent [1], [3] 

at the time. This crisis described the difficulty of writing correct and maintainable 

programs as computational power and the concomitant complexity of problems that can 

be tackled increased. The crisis manifested itself both in: (i) unmanageable projects 

running over budget and late1 and (ii) low quality, inefficient software not meeting 

original requirements. In some cases projects failed completely, being unable to deliver a 

final product. In order to tackle these issues, well defined and structured approaches had 

to be developed. 

The complexity problem and the need for defined processes can be described using 

analogies from building construction. While most people can hammer a nail into a wood 

board, a much smaller fraction of the population (your humble author excluded) is 

capable of building a doghouse with an even smaller number of people being capable of 

building a wooden cabin. Increase in the size and complexity of a project demands not 

                                                 
1 Based on industrial surveys and statistical data, even in the modern era, the average project is 6 to 12 
month behind schedule and 50 to 100 percent over budget [4]. 
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only increased craft skills but also the ability to plan, design, build and test the final 

product.  

Similar to other engineering disciplines, software engineering is divided into a number of 

knowledge areas [2], [5]. We now describe a few such areas relevant to this thesis. The 

first four areas can be mapped to specific development phases: 

1. Software requirements: deals with elicitation, analysis, specification, and 

validation of requirements for a given software project.  

2. Software design: generates high-level designs (also called architecture) depicting 

the components and their interfaces, based on specifications elicited during the 

software requirements phase. Once the high-level design is complete, low-level 

design of specific components can be created. 

3. Software construction: relates to the actual implementation (coding and unit 

testing) of the product based on design specifications. 

4. Software testing: verifies that the implementation satisfies the specifications and 

is free of defects. Once the testing is complete, the product is deployed in the 

field.  

In practice, the development is done using an iterative and incremental approach [6]: an 

organization will pass through multiple iterations of requirements, design, construction, 

and testing between the initial planning and final deployment of the software product. 

5. Software maintenance: provides support by answering questions and fixing 

defects that have escaped the testing team and were identified by customers in the 

field (after product delivery). In addition, software maintenance may also deal 

with changes to product functionality (also called software evolution) satisfying 

additional customer requirements arising during product exploitation use. 
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The previous five knowledge areas map to specific phases of software development. The 

remaining two are more general. 

6. Software engineering management: relates to project management (and 

measurement) of software engineering. 

7. Software quality control: corresponds to the qualities of the intended system 

(e.g., reliability of the system, performance, usability, interoperability, 

portability, maintainability, and others). This area is tightly related to all of the 

areas listed above. 

A significant amount of work has been done improving the software development process 

and integrating these changes into the industry. However, an analysis (based on literature 

and empirical evidence) published in 2003 concludes: 

“In a discussion of software engineering and society in 1968 [1], Kolence 

suggests that ‘the basic problem is that certain classes of systems are placing 

demands on us which are beyond our capabilities and our theories and methods of 

design and production at this time.’ Empirical evidence of software engineering 

projects suggests this crucial issue remains valid 35 years after it was stated. It 

appears that as fast as software engineering makes progress, so the demands made 

on it continue to increase beyond its capabilities” [7]. 

What is the current state of the process maturity in the industry? An approach for process 

improvement, called Capability Maturity Model Integration (CMMI) [8], was developed 

by the Software Engineering Institute of Carnegie Mellon University (SEI). The CMMI 

helps “integrate traditionally separate organizational functions, set process improvement 

goals and priorities, provide guidance for quality processes, and provide a point of 

reference for appraising current processes.” [8] The CMMI defines five levels of process 

maturity [8]: from the lowest (CMMI-1) corresponding to chaotic, poorly controlled, and 

reactive processes; to the highest (CMMI-5) corresponding to proactive, well defined 

processes with focus on constant improvement.  
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The SEI conducts regular surveys to determine the maturity distribution of processes in 

the industry. Based on the survey of process maturity profiles [9] the number of 

organizations with chaotic processes or defined reactive processes (CMMI -1 and -2) 

went down from ≈35% in 2002 to ≈28% in 2010. The number of organizations with 

proactive processes (CMMI-3) went up from ≈33% in 2002 to ≈55% in 2010. However, 

the number of organizations with highest levels of process maturity (CMMI -4 and -5) 

focusing on well established, measured and controlled processes and with continuous 

process improvement went down from ≈23% to ≈10%. 

Why is the chaos in Software Engineering higher than in other engineering disciplines 

[10]? Why is the fraction of organizations with highest process maturity decreasing [9]? 

Increasing complexity is one of the major contributing factors to the problem [7]. 

However, there exist additional economic and legal reasons.  

The problem is two-fold: 

1. Many of the techniques created to improve software processes are non-scalable 

[11] – as projects get larger time and resource constraints force some processes2 

to be sacrificed at least part of the time. 

2. Even if a technique is applicable to a given project, it may not be enforced by the 

organization due to corporate culture [10]: employees’ performance evaluation 

may not take into account the use of proper processes.  

Potential solutions to this problem are complicated by the fact that the majority of 

software products (unlike products created using other engineering disciplines) include 

“as-is” clauses in their licenses stating that a given software vendor does not provide any 

warranty and shall not be deemed liable for any damage caused by its software products. 

                                                 
2  An example of such process is software inspection (structured peer-reviewed process aimed at finding 
defects in development documents, such as programming code and design) [12]. 
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This can lead to the situation where the final quality of the product is considered non-

critical by some developers. This decreases the economic incentive for software 

developers to properly engineer solutions.  

How should the situation be improved? The first aspect of the problem can be solved by 

developing fast and scalable solutions supported by proper empirical studies [13], [14]. 

The second aspect does not have a straightforward solution: it is extremely difficult to 

change corporate culture [15]. In order to address this issue, newly developed techniques 

and processes should be capable of being integrated into existing processes without 

draining significant resources. Namely, they should satisfy the following requirements: a) 

be easy to implement and b) be easy to automate. Once implemented, a process should 

run automatically and deliver regular reports in a comprehensible format. 

This thesis describes a set of models, techniques, and metrics (satisfying the above 

mentioned requirements) that can help in the analysis of computer software during 

various phases of software development.  

1.1 Outline 
Many problems in the Software Engineering domain are similar, from the mathematical 

perspective, to problems in other disciplines, such as Financial Engineering. Therefore, 

similar tools may be applied to Software Engineering and Financial Engineering 

problems. One example is the usage of stochastic tools for modeling stock prices and 

requirement attributes. Another example is the usage of Extreme Value Theory for 

modeling the probability of rare events, such as high magnitude earthquakes and software 

defects with a high number of rediscoveries. The thesis consists of six papers (one paper 

per chapter) that use mathematical tools (from the domains summarized in Table 1) to 

develop a set of techniques to assess and mitigate risks associated with particular phases 

of software development (given in Table 2).  
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Table 1. Papers: summary information 
Chapter 

# 
Topic Publication type Tools Reusing tools from 

2 Technique for selection of 
software traces 

Conference 
proceedings (best 
student paper) 

Heuristics Algorithms 

3 Technique for selection of 
software traces  using 
entropies  

Submitted to 
Information 
Sciences 

Entropies Information Theory 

4 Metrics quantifying risk 
associated with defect 
rediscovery 

Manuscript Extreme value 
theory, heavy-tailed 
distributions 

Risk Management 
and Operational 
Research 

5 Model for selection of a 
minimal set of customers 
for profiling 

Workshop 
proceedings 

Binary integer 
programming 

Operational 
Research 

6 Model of relations 
between requirements and 
underlying assumptions 

Conference 
proceedings (short 
version) 

Stochastic models, 
Boolean Networks 

Stochastic Modeling 

7 Models for managing  
injection of requirements 
late in development cycle 

Workshop 
proceedings 

Stochastic models Stochastic Modeling 

Table 2. Applicability of the papers to software development phases (X marks 

applicable area) 
Development Phases Overall product 

quality 
Project 

management 
Chapter 

# 
Requir-
ements 

Archi- 
tecture 

Coding Testing Mainte-
nance 

  

2    X X   
3    X X   
4     X X X 
5     X X X 
6 X       
7 X       

The first and second papers address issues arising in the testing and maintenance phases 

of software development. The analysis of execution paths (also known as software traces) 

collected from a given software product can help in software testing and software 

maintenance. Unfortunately, techniques operating on traces containing full execution 

details are resource-intensive. In the first paper, given in Chapter 2, we propose a 

“fingerprint”-based iterative-unfolding technique for prompt selection of a subset of 

traces relevant to a given task. Once the subset is selected, it can be passed to external 

tools for further analysis. In Chapter 3, we study the applicability of extended entropies in 
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the role of fingerprints. The techniques in these two papers can accelerate problem 

determination of defects discovered by customers, leading to improved organizational 

response (thus increasing customer satisfaction) and to easing of resource constraints. 

The third and fourth papers, presented in Chapters 4 and 5, help in addressing issues 

related to software maintenance and overall quality. Techniques presented in these papers 

also help project managers in resource allocation. 

The third paper analyzes rediscovery of defects by customers and establishes a set of 

metrics (based on risk management and operational research apparatus) needed to 

quantify the risks associated with defect rediscovery. The metrics are designed to help: 

the QA team to assess their processes, the support and maintenance teams to allocate 

their resources, and the customers to assess the risk associated with the use of the 

software product.  

Collecting information about product usage by customers (operation profiling) helps 

testers to build realistic workloads, covering functionality executed by customers, hence 

reducing risks associated with inadequate product quality. However, it is impossible to 

gather such information from all customers due to resource and legal constraints. The 

fourth paper establishes a relation between defects encountered by customers and their 

operational profiles. We then build a model for selecting a minimal set of customers that 

should be profiled to gather information about users’ behaviour.  

The fifth and sixth papers deal with problems from the domain of requirements 

engineering.  

Each requirement collected during requirements elicitation has an underlying assumption. 

However, incorrect assumptions can lead to software problems. In order to quantify the 

risks associated with such problems a stochastic model of relations between requirements 

and underlying assumptions is established in the fifth paper (Chapter 6). 
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The sixth paper, presented in Chapter 7, defines stochastic models for managing risk 

associated with requirements injected late in the software development cycle (we call this 

event escalation). The models can help in predicting escalations of the existing 

requirements and in allocating resources to handle the arrival of unknown requirements. 

Finally, Chapter 8 concludes the thesis. 
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Chapter 2  

2 SIFT: A Scalable Iterative-Unfolding Technique for 
Filtering Execution Traces  

Comparing program execution traces can be useful for numerous purposes, such as 

software testing, system security analysis, program comprehension, software evolution 

and other areas of software development. Unfortunately, trace comparison techniques that 

operate on execution traces containing full execution details are too slow for use in large-

scale production system environments. In order to speed up the comparisons, we propose 

a technique (called SIFT) for "filtering-out" irrelevant traces from a given set so that only 

the relevant few residual traces are then used for comparison. Our solution involves 

multiple levels of trace compression, each with a different degree of abstraction. These 

traces are compared iteratively while filtering out dissimilar traces. This chapter describes 

the compression and comparison algorithms.  Prototype results from a significant case 

study show that the SIFT approach is efficient and scalable for use in an industrial 

software development environment. 

2.1 Introduction 
The comparison of program execution traces (see an example trace in Figure 1) is 

important for a number of problem areas in software development and use. In the area of 

testing, for example, it  can be used to: (1) determine how well user execution paths 

(traces collected in the field) are covered in testing [4, 7, 25]; (2) detect anomalous 

behaviour arising during a component’s upgrade or reuse [21]; (3) map and classify 

defects [13, 27, 31]; (4) determine redundant test cases executed by one or more test 

teams [30]; and to (5) prioritize test cases (to maximize execution path coverage with a 

minimum number of test cases) [8, 23]. Trace comparisons are also used in operational 

profiling (for instance, mapping frequency of use of execution paths by different classes 

of users.) [25] and intrusion analysis (e.g., deviations of field execution paths from 

expectations) [17]. 



 

 

11

For some problems, such as test case prioritization, traces gathered in a condensed form 

(such as a vector of executed function names or caller-callee pairs) are adequate [8]. 

However, for others, such as the detection of missing coverage and anomalous behaviour 

using state machines, detailed execution paths are necessary [4, 21]. Also, in some 

situations, the time required for analysing traces can be extremely important, for example 

when a customer support analyst is using traces to map a reported defect onto an existing 

set of defects, or when a development analyst is working with the testing team to identify 

missing coverage that resulted in a field defect. 

 

 

 

 

In general, a trace can be thought of as a sequential log of pertinent information 

captured during any particular execution-run of software. This trace shows program flow 

entering functions3 f1, f2, and f3, and eventually exiting these functions and, while in 

function f3, it reached specific data points (probe 1 and probe 2), which were manually 

set by the developer as points of interest. 

Figure 1. An example of a trace 

Research Problem and Practical Motivation: Unfortunately, comparison techniques that 

use full execution paths (i.e., do not use some abstracted versions of the paths) lack 

speed, which can become critical when using numerous large execution traces. For 

                                                 
3 In this case a function is equivalent to a subroutine. 

process_id = 133 thread_id = 15 node = 0
1           f1 entry 
2           | f2 entry 
3           | | f3 entry 
4           | | f3 data [probe 1] 
5           | | f3 data [probe 2] 
6           | | f3 exit 
7           | f2 exit 
8           f1 exit 
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example, the kTail-based algorithms4 applied to traces from a reference system, called 

Object Flattener, (for the purpose of creating finite state automata – which would involve 

comparing given traces) did not terminate after 24 hours of execution [4]. While the 

kBehavior algorithm [4] accomplished this task in “minutes”, their paper does not 

mention the size or the number of traces involved in Object Flattener. Subsequently, we 

applied kBehavior prototype tool [15] on traces from our environment. With only 2 traces 

totalling 426 elements (the smallest in our set of traces), the tool took 9 minutes; with 36 

traces totalling 8625 elements (considered small in our environment), it did not terminate 

after 36 hours. Finally, various permutations of up to 57 traces and up to 68,705 elements 

consistently caused the kBehavior prototype to crash. These experiences highlight the 

need for speed and robustness of the solutions. 

In our development environment, we are faced with a distributed, multi-process, and 

multi-threaded system of over 10 million lines of uncommented source code developed 

over 15 years, with over 100 thousand traces (many with millions of elements per trace) 

from the testing phase. There are hundreds of thousands of installations worldwide of the 

system, in different configurations. As a result, a critical issue surfaced as to how quickly 

the testing organization could identify those test cases that match the traces collected 

from the field upon recognition of a defect or a problem such as a logic error. While there 

are many different approaches to performing trace comparisons, they are not considered 

workable, as described earlier, for the large and complex system we are dealing with. The 

described need to match field traces with test cases quickly, together with a lack of 

reliable and scalable tools for doing this, motivated us to investigate alternate solutions.  

Solution Approach: To speed up comparison of traces, we propose that traces first be 

filtered out from the given set, rejecting those that are not going to match with the test 

cases and then only the remaining few be compared for target purposes. The underlying 

                                                 
4 The algorithms generate Finite State Automata models. 
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assumption is that most traces in a given set will not be the same; few will be similar, and 

even fewer will be identical. We validated this assumption in our sample set of traces by 

manual inspection of the dataset. Thus, filtering out irrelevant traces is a key to speeding 

up the comparison process. 

This strategy is implemented in our solution called the Scalable Iterative-unFolding 

Technique (SIFT). Basically, the collected traces are first compressed into several levels 

prior to comparing them. Each level of compression uses a unique signature, which we 

call a “fingerprint”5. Then, starting with the highest level of compression the traces are 

compared, and unmatched ones rejected, while iterating through the lower levels until the 

comparison process is complete, leaving only traces that match at the lowest (or 

uncompressed) level. The SIFT objective ends here. The matched traces can then be 

passed on to external tools for further analysis such as code coverage, security breaches, 

and operational profiling.  

Case study: The prototype results from a case study we conducted show that the approach 

is scalable for use in large-scale software system development environments. That is, in 

no more than four iterations (depending on the context of the specific problem being 

solved), dissimilar traces are rejected, leaving only the residual similar traces. The case 

study was conducted on 1416 multithreaded test case traces collected from the system 

under study (SUS), with  an average length of 1.93×106 elements (maximum 1.55×108 

elements) per trace. The first test was comparing a trace against a set of 1,000 traces (e.g., 

useful for coverage analysis); the average time was 4 seconds. The second test was 

“within-set” filtering and clustering (e.g., useful for periodic profiling of usage similarity 

among a class of users or a class of test cases); the average of comparing multiple times 

within a set of 1,000 traces was only 44 minutes.  

                                                 
5 The fingerprint of the next iteration always contains more information than the fingerprint of the previous 
iteration, hence the term unfolding. 
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Based on the extrapolation of the timing data obtained from the case study, it should take 

39 seconds on average to filter out 10,000 different traces, leaving, as a residue, a few 

uncompressed traces that are within the user-defined threshold of similarity. Similarly, 

filtering (and clustering) within a set of 10,000 traces should take 2.6 days on average. 

We consider the “within-set” performance as quite reasonable, and encouraging, given 

that such profiling would occur only periodically in a product’s life. Considering the lack 

of readily available solutions for use in industrial-scale environments, the proposed 

approach is both elegant and effective. 

The rest of the paper is structured as follows: Section 2.2 reviews related literature. 

Section 2.3 details the SIFT and associated algorithms. Section 2.4 analyses the 

efficiency and accuracy of the SIFT. Section 2.5 describes an implementation and use of 

the proposed approach. Section 2.6 describes the case study. Finally, Section 2.7 gives 

conclusions and describes future work. 

2.2 Related Work 
A variety of different approaches (such as, automata, signals, call-graphs, compression 

without information loss, and clustering) exist in dealing with execution traces for 

various target purposes such as finite automata representation, visualization, test-case 

prioritisation, and failure classification. These are overviewed below. 

Finite State Automata representation: There is a family of kTail-based algorithms that 

can be used to find differences in execution path coverage between traces [2, 3, 20, 28]. 

These algorithms generate Finite State Automata (FSA) interaction models by combining 

traces into prefix tree automaton. Observed behaviour is generalized by merging states 

that cannot be distinguished from the outgoing paths of length k (merge shared k-future 

states). The original kTail algorithm was proposed by Biermann and Feldman [2]. Cook 

and Wolf [3] introduce an additional reduction step to the kTail approach. Reis and 

Renieris’ [28] algorithm reduces the FSA if two states share at least one k-feature. 

Finally, Mariani and Pezze [20] introduced the kInclusion extension to kTail (two states 
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are merged if a k-feature of the first state is included in the k-feature of the second state). 

All of the algorithms above need to process all traces first before generation of the 

interaction model can begin. Mariani and Pezze [21] developed an algorithm, called 

kBehavior, that overcomes this issue and works incrementally. These techniques may be 

used to determine how well user execution paths (traces collected in the field) are 

covered in testing [4], detecting anomalous behaviour arising during a component’s 

upgrade or reuse [21], and general program comprehension [28].  

Signal representation: Kuhn and Greevy [16] visualize multiple execution traces in signal 

form, discarding information about function names. Once conversion to signal form is 

complete, a Dynamic Time Warping (DTW) pattern recognition technique is used to find 

similar patterns between traces. This approach is used to compare detailed execution 

traces for program comprehension. Unfortunately, patterns of execution paths containing 

different function calls may have similar shapes. This is especially true for large software 

systems consisting of multiple processes. Therefore, it is important to group (pre-filter) 

the traces containing similar execution paths, before conversion to the signal form. Once 

pre-filtering is complete, an analyst can apply the DTW technique to each of the groups 

separately.  

Call graph representation: Another approach patented by Avvari et al. [1] is the idea of 

creating and analysing call graphs. Execution paths (EP) are first converted into call 

graphs and then compared in graph form. In practice, the quantity and complexity of EP 

in a large software system would not allow one to perform this comparison directly in a 

feasible amount of time. For example, for a large software system, the number of test 

cases can be of order of 105, with the number of records per EP of the order of 106. The 

performance of the publicized algorithms is, at best, of ( ) ( )2log / / logV E V E V⎡ ⎤
⎢ ⎥⎣ ⎦

O , where V is 

the number of vertices and E is the number of edges in a given EP call graph (see [9, 10] 

for details). 
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Lossless compression techniques: With these techniques, it is possible to reconstruct the 

exact original data from the compressed data. Renieries et al. [29] introduce lossless 

compression techniques for source-code-level traces that lead to significant compression 

of the original traces. Techniques, such as that designed by Hamou-Lhadj and Lethbridge 

[12] can be used for visualizing traces in a compact form, which can be useful for 

viewing several traces on a display screen during software maintenance. 

Lossy compression techniques: With these techniques, reconstruction of the exact original 

data from the compressed data is not possible. There are both short and long execution 

sequences, used for various purposes. In the realm of short sequences, for example, 

Elbaum et al. [8] found that function-name-level execution traces can be useful for test 

case prioritization. Rothermel et al. [30] and Masri [22] used the same type of traces to 

perform test suite reduction/minimization by identifying redundant traces. Greevy et al. 

[11] explore relations between features (function names) extracted from traces and 

software entities for software evolution analysis. Yuan et al. [31] found that for system 

call defects, caller-callee-pairs-level execution traces (with parameter information) were 

effective for mapping a new problem to an existing one. In the realm of long sequences, 

for example, Miranskyy et al. [23] show that sequences of length 3 or more are 

potentially important for test case prioritization. Elbaum et al. [7] found that sequences of 

length 5 are useful for fault detection. Dalmeier et al. [5] studied sequences of various 

lengths (no more than 8) to localize defects. Lee et al. [17] found execution sequences of 

length 7 and 11 to be useful for intrusion detection. 

Trace clustering techniques: In addition, researchers have created techniques to compare 

other types of information. For example, a number of studies exist on clustering 

execution profiles collected from software users. These profiles are not focused on 

execution traces and can include additional information about a particular software 

system, such as covered code-blocks, heap size, CPU load, etc. For example, Podgursky 

et al. [27] and Haran et al. [13] use various techniques to cluster such profiles. These 

clusters can be used to classify a software system’s failures. However, they do not 
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address the challenge of comparing detailed uncompressed traces so the need to filter the 

traces remains.  

While there are many techniques, as described above, researchers have not considered the 

idea of filtering-out traces to improve comparison of uncompressed traces. This is the 

bounded scope that is addressed by our work described in the next section.  

2.3 Method Description 
In this section, we first describe the basics of the SIFT approach in Section 2.3.1. As 

overviewed in the introduction section, this approach filters out traces from a given set 

that are not going to match with the test cases, leaving a few for detailed comparison. 

Section 2.3.2 then describes the algorithms underlying this approach. The analysis of 

these algorithms is carried out in Section 2.4. 

2.3.1 The Iterative-Unfolding Approach 

Further to the introductory description earlier, the idea behind the SIFT approach is two-

fold.  

Unfolding: First, traces to be compared can exist at different levels of compression. For 

example, at the lowest level of compression, a trace would be at the level of detail 

captured from program execution, where a sequence of function calls is represented as a 

string of calls. A slightly higher level of compression could be, for example, where this 

string of functions calls is broken down into “caller-callee” pairs. A yet higher level of 

compression could be just a list of function names. The type of compression applied and 

the number of compression levels is analyst defined and should be selected in such a way 

that the current iteration compression technique retains less information than the next 

iteration.  

Also, applying compression leads to loss of information in the resultant compressed trace. 

The type of information lost depends on the compression technique applied. Furthermore, 

to obtain the various higher-level traces, different compression techniques are applied 
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directly to the program-level (or lowest-level) trace. Compression techniques and 

compression levels are independent of each other. Note that any compression technique 

can be used for trace compaction, as long as a certain measure of distance can be 

calculated between a pair of compressed traces.  

The full scope of the type of data involved in a trace can include a wide variety of 

program elements such as: events, logic-based points in the program flow, store & 

retrieve transaction points, and process enaction or termination points. We define a 

process as an instance of a sequentially executed computer program. 

Iterative: The second idea behind the SIFT approach is that it proceeds by comparing 

stored traces at the highest level of compression and, based on the outcome of this 

comparison (that is, a set of matched and unmatched traces), discards the unmatched set 

of traces and proceeds to compare the matched set of traces at the next lower level of 

compression until a terminating condition is satisfied. The terminating conditions are: (1) 

the number of traces remaining for comparison is below a certain threshold; (2) no lower 

levels of compression of traces exist; and (3) practical conditions such as exhausting time 

and resources. 

A benefit of this approach is that it makes comparison of large program traces or large 

volumes of traces practical. Later, we discuss the various permutations of trace 

comparison situations and how our approach fares with these. 

2.3.2 Algorithms 

It is important to understand the different situations where trace comparisons can be 

useful, for example, how test cases relate to each other and to field execution of the 

software system. In Section 2.3.2.1, we discuss various situations of interest for trace 

filtering. Two core comparison algorithms are discussed in Section 2.3.2.2.  Recall that 

the comparisons proceed iteratively, from higher to lower levels of compression; the 

algorithms are further described in Section 2.3.2.3. 
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There are several fundamental types of situations for comparing execution traces: 

(a) A single trace t against a set of traces6 S. We can represent this comparison process 

by a function P1 that takes as input two variables of interest, trace t and a set of traces S, 

and outputs a subset of traces  S1 closest7 to t:  

P1(t, S) → S1. 

One example of this situation is where the single trace is captured from the system’s use 

in the field, hereafter called User Trace (UT); by contrast, the set represents the traces 

captured from the execution of test cases, hereafter called House Traces (HT). This is 

useful for identifying a subset of HTs that match the given UT for a purpose such as 

coverage analysis, or for that matter, for identifying mismatches for the purpose of 

proactively creating new test cases.  

(b) Within a given set of traces S. Here, the comparison function P2 clusters S into L 

subsets of similar traces: 

P2(S) → {S1, S2, …, SL}. 

One example of this situation is comparing a set of UTs against itself to profile subsets of 

customers with similar system usage needs. The outputs of the comparison process are 

subsets of similar and different traces. 

In the next section, we describe how the comparison of two given traces is performed. 

                                                 
6 This approach can be further generalized to comparing two sets of traces, see [24] for further details. 
7 See Section 4.3.2.1.2 for a complete discussion of our distance metric. 
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2.3.2.1 Core Algorithms: Fingerprints, Processes, and Traces 

There are a number of algorithms that are used for the SIFT approach. For the sake of 

clarity, we will first explain each algorithm and then continue with the description of the 

overall approach.  

First, as described in Section 2.1, there is the notion of a “fingerprint”. The fingerprinting 

technique is described in Section 2.3.2.1.1. Also, we introduced the notion of a process in 

Section 2.3.1. Traces contain information about multiple processes executed in parallel 

(mostly independently). To align execution sequences pairwise comparison of processes 

has to be implemented. The algorithm for comparing a pair of processes is described in 

Section 2.3.2.1.2. We then describe the algorithm for comparing a pair of traces, building 

upon process comparison, in Section 2.3.2.1.3. The overall approach binding fingerprints, 

processes and traces is described in Section 2.3.2.1.4. 

2.3.2.1.1 Fingerprints 

A “fingerprint” of a process describes the uniqueness of the process in terms of the call 

sequence, elements of contextual information, and other relevant information that make 

up the fingerprint. The first technique for creating fingerprints would be the collection of 

component names along with the frequency of occurrence contained in each process. On 

average, the number of components per process is of order 101. In most cases, it should 

not be bigger than 102. Similarly, information about function names can be collected. 

In order to collect the next set of fingerprints we use a concept of l-words (also known as 

N-grams [31]) to represent execution sequences. An l-word represents a continuous 

substring of length l from a string. We then collect information about all possible entry, 

exit, and probe points (defined manually by software developers at important places 

inside the functions) and their frequency for each process (1-words) and end up with all 

possible pairs of entry, exit, and probe points (2-words). For example, for the process 

given in Figure 1, the set of all possible 1-words will be given by the set 

{ }1 2
1 2 3 3 3 1 2 3, , , , , , , ,f f f f f f f f+ + + − − − where in k

jf  the lower index j represents the function 
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name index and the upper index k represents the record type: + for an entry, − for an exit, 

and number for a probe point k. 2-words will be represented accordingly by  the set 

{ }1 1 2 2
1 2 2 3 3 3 3 3 3 3 2 1 3 2, , , , , , .f f f f f f f f f f f f f f+ + + + + − − − − −  All 1- and 2- words are unique in this 

case – their frequencies are equal to 1. 

Additional measures, such as Entropy measures [6] or N-stacks , can be introduced as 

needed.  If a user is interested in calculating exact matching between traces, then hashing 

techniques can be used for compression. However, these techniques are not applicable for 

approximate trace matching, since no non-trivial measure of distance can be established 

between hashed traces. 

2.3.2.1.2 Algorithm for Comparing a Pair of Processes 

We summarize the algorithm for comparing a pair of processes at different levels of 

compression in Figure 2. Functional forms of Mk(X,Y) are given below.  

Suppose we compare fingerprints of two processes p1 and p2 at the level of 

compression l. The distance between two processes is denoted by d.  

Procedure compare_processes (p1, p2, l).  

 If (level l fingerprint contains frequency info) 

  d ← Ml(p1, p2); 

 else if (level l fingerprint does not contain frequency info) 

  d ← Ml
*(p1, p2); 

 else if (level l represents uncompressed trace) 

  d ← M•(p1, p2); 

 return d; 

Figure 2. Algorithm for comparing two processes 

In order to measure the distance M•(X,Y) between two uncompressed processes X and Y, 

processes are represented as strings; string comparison algorithms, such as diff [26] or 

Pattern Hunter II [19], can be used to find similarities and differences. As a measure of 
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distance between two uncompressed traces we use the Levenshtein distance8 [18], 

denoted by MU. An example of comparing two processes is given in Figure 3. 

For comparing two compressed processes X and Y at the level of compression k (see 

Section 2.3.2.2 for details), we use the following metric: 
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member in the set, e.g., frequency of occurrence, or zero if the member is absent. The 

summation is performed for all elements of sets X and Y (X  ∪ Y). We add 1 to both the 

numerator and the denominator to avoid division by zero and subtract one from the ratio 

to get 0 if X(i) = Y(i). 
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Figure 3. Comparison of two uncompressed processes. Upper dashes depict 

functionality present only in Process 1; lower dashes – functionality present only in 

Process 2; no dashes – common functionality. 

Note that the usage of p-norms, e.g., Euclidean norm is not desirable; since they will not 

highlight information about non-overlapping set members, while metric (2.1) will; see 

Example 1 for details. 

                                                 
8 Levenshtein distance between two strings is given by the minimum number of operations (insertion, 
deletion, and substitution) needed to transform one string into another. 
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Example 1. 

Suppose we have two processes: A containing components a and b with frequencies 4 and 

3 accordingly; B containing components a, b, and c with frequencies 5, 3 and 1; and C 

containing components a, b, and c with frequencies 4, 3 and 2. We can write these 

fingerprints as three vectors: A = [4  3  0], B = [5  3  1], and C=[4  3  2].

 By calculating the distance between processes9 (
2

A B− denotes Euclidiean distance 

between A and B) we get  

 
2

2

( , ) [0.2 0 1] 1.2,

( , ) [0 0 1] 1.0,

|| || [1 0 1] 2.0,

|| || [1 0 1] 2.0.

M A B

M B C

A B

B C

= =

= =

− = =

− = =

∑
∑
∑
∑

 (2.2) 

Euclidean norm treats all dimensions equally; it shows that the distance between 

processes A and B is the same as between processes B and C. However, we want to 

emphasize the fact that A and B are further apart than B and C, since component c is 

missing in A and metric M highlights this fact. 

For those fingerprints that do not contain frequency information (vectors whose i-th value 

is 1 when the element is present in the uncompressed trace and 0 otherwise), we can use a 

simple metric 

 * 0,
( , ) .

,k

X Y
M X Y

X Y
∩ ≠ ∅⎧

= ⎨∞ ∩ = ∅⎩
 (2.3) 

This measure is conservative, but is rather fast to compute 

                                                 
9 Measure (2.1) is calculated as M(A,B) = [(max(4,5)+1)/(min(4,5) + 1)-1]+ [(max(3,3)+1)/(min(3,3) + 1)-
1]+ [(max(0,1)+1)/(min(0,1) + 1)-1] = (6/5-1)+(4/4-1)+(2/1-1)=1.2 
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2.3.2.1.3 Algorithm for Comparing a Pair of Traces 

Since the traces consist of multiple processes, we need to perform cross-comparisons 

between each pair of processes and aggregate this data to obtain a quantitative description 

of the distance between traces.  To do this, we need a (possibly heuristic) distance 

measure that calculates the distance between a pair of similar traces to be less than the 

distance between a pair of less similar traces. 

No simple one-dimensional measure of a complicated concept such as the “difference 

between two traces” can capture all desired features. Is Moby Dick closer to the Book of 

Genesis than it is to the Catcher in the Rye? It is unlikely that a simple heuristic can be 

devised that answers this question to everyone’s satisfaction. Nevertheless, we need a 

heuristic. Our heuristic is defined in Figure 4. 

2.3.2.1.4 The Overall Approach 

The algorithms implement SIFT through trace and process comparison, as well as 

fingerprinting. During software execution, in a concurrent processing environment, a 

trace t could consist of the multiple, parallel, processes executed during the software run. 

If the total number of processes in a given trace t is equal to m then  

t = {p1, p2, …, pm}. 

Later, we will use this information to compute the similarity between given traces. In 

general, a process may split into multiple threads. For the sake of simplicity, in this paper 

we assume that each process consists of a single thread – henceforth processes and 

threads are treated as equal. Comparing two multi-threaded processes is analogous to 

comparing two traces with multiple processes.  

Suppose we compare two traces t1 and t2 with number of processes equal to N and M 

respectively at the level of compression l. Distances between processes of t1 and t2 

are calculated and stored in matrix D with m rows and n columns (defined by the 

conditions below). Function t(k) returns k-th process of trace t. The distance between 
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two traces is denoted by d. 

Procedure compare_traces (t1, t2, l) 

 //fill in the distance matrix 

 for i ← 1 to N 

  for j ← 1 to M 

     D(i,j) ← compare_processes (t1(i), t2(j), l); 

 //calculate the distance between traces 

 (d1, p1) ← calc_trc_d(D); 

 (d2, p2) ← calc_trc_d(transpose D); 

 d ← (d1 + d2)/2, 

   //percentage of non-overlapping processes 

 p ← (p1 + p2) / (N + M);  

 return (d, p); 

//calculate distance between pair of traces 

Procedure calc_trc_d(D) 

 d ← 0; //distance between overlapping processes 

 p ← 0; //number of non-overlapping processes 

 for each row in D 

  m the minimal distance in a given row;  

  if d = ∞ 

   p++; 

  else 

   d += m;  

 return (d, p); 

Figure 4. Algorithm for measuring distance between traces.10 

                                                 
10 Note that we can speed up comparison process by keeping track of similar pairs of processes from 
higher levels of compression. 
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Let the set of all possible elements of contextual information that can be captured during 

software execution be denoted by E. A process p with n elements is represented by a 

sequence 

 
1

N
i i

p e
=

=  (2.4) 

where i indexes the ith event captured, and each event e∈E. In order to compute the 

distance between two given traces, we need to compute that measure in terms of the 

distance between the respective sets of processes contained within the two traces. In 

essence, we perform cross-comparison between each pair of processes (one process from 

each of the two given traces) to obtain their distance, and aggregate this data to obtain a 

quantitative measure of the distance between the two given traces. The distance between 

two given processes is computed as follows: 

compare_processes(prc_id1, prc_id2, c_l) → d_p 

where, prc_id1 and prc_id2 are processes  at the level of compression c_l; and the 

comparison process returns a measure of distance between processes d_p. 

Compare_processes is outlined in Section 2.3.2.1.2. 

The process information can be compressed (using lossy compression techniques, i.e., 

compression with loss of information) into the “fingerprints” introduced in Section 

2.3.2.1.1. Individual uncompressed processes are independently compressed, using 

different compression formulae, to obtain various compression levels. The level of 

compression of a process specifies the type of fingerprint that should be used in the 

comparison procedure. 

Based on process comparison, we can now describe how the traces are compared. The 

comparison procedure within any given context considered in Section 2.3.2.1 is defined 

as follows: 

compare_traces(trc_id1, trc_id2, c_l) → {d_t, p_p}, 
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where trc_id1 and trc_id2 are execution traces at the level of compression c_l; and the 

output of this comparison is given by a tuple of distance measure between traces d_t and 

percentage of non-overlapping processes p_p. The parameter c_l is set by the analyst and 

is, in fact, passed on to the compare_processes procedure discussed above. Details of 

compare_traces are given in Section 2.3.2.1.3. 

2.3.2.2 The Iterative-Unfolding Algorithms 

As described in Section 2.3.1, the traces are compared iteratively from the highest to the 

lowest level of compression. During each iteration, the comparison follows the procedure 

described in Section 2.3.2.1.4. Recall from Section 2.3.2 that there are two practical 

contexts for comparing traces: (i) a single trace against a set of traces and (ii) within a 

given set of traces. Thus, Figure 5 and Figure 6 respectively describe the two algorithms 

to deal with these contexts. 

Assume that compression level l is in the range 

[0, 1, …, N], where 0 is an uncompressed trace level and N is a fingerprint containing 

the least amount of information. A single trace t is compared against a set of traces S. 

The array Td (of size N+1) contains maximum measures of distance between traces 

for different compression levels. Maximum percentage [0,1] of non-matching 

processes is denoted by Tp. The end result is a set of traces below the threshold level. 

Procedure P1(t, S, Td, Tp) 

 for l = N to 0 

  for each trace in S 

         (d, p) ← compare_traces(t, trace, l) ; 

         if d > Td(l) or p > Tp 

                S = S – trace;  

 return S; 

Figure 5. Algorithm for comparing a single trace t against a set of traces S. 
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The traces are clustered using the Agglomerative Hierarchical Clustering (AHC) 

algorithm [14]. It is computed by a function cluster(d_m,d_t),which takes the distance 

matrix between traces d_m and the maximum distance between traces to be clustered d_t. 

The distance between clusters is determined by measuring the maximum distance 

between elements of each cluster. The clustering is stopped when, based on a particular 

distance criterion11, the clusters are too far apart to be merged. 

2.4 Analysis 
In this section we analyze the algorithms presented in Section 2.3.2.  The efficiency 

analysis of the functions is described in Section 2.4.1.  Section 2.4.2 describes constraints 

within which the algorithms are accurate. Section 2.4.3 describes the overhead due to our 

approach. 

2.4.1 Efficiency 

In Section 2.4.1.1 we discuss efficiency of the core algorithms. Efficiency of the 

Iterative-Unfolding Algorithms is shown in Section 2.4.1.2. Special cases are discussed 

in Section 2.4.1.3. 

2.4.1.1 Core Algorithms Efficiency 

The derivation of our algorithms asymptotic behaviour may be found in [24]. Only the 

final results are presented here. Look at the maximum number of algorithm operations 

required to compare a single trace t against a set of traces S (given in Figure 5). In the 

worst-case scenario, when all traces within S are close to t and cannot be filtered out, we 

will have to perform all iterations on the full set |S|: 

 ( ) ( ) ( )
2
0

max 2 2 2 2 2
1 0 0[ ( , )] | | | | | |

lKL L

lC P t S K S N L S N L S N L
α β

<

∈ + =
� �� � � � � �

���	��
 ���	��

O O O  (2.5) 

                                                 
11 Given two clusters A and B, the distance is calculated by max{compare_traces (a, b, l) : a ∈ A, b ∈ B}. 
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where K is the maximum level of compression, N
�  is the maximum possible number of 

processes in a trace and 
l

L
�  is the maximum length of a given fingerprint at compression 

level l. The comparison for l > 0 is performed using measures of distance (2.1) and (2.3); 

comparison of uncompressed traces is performed at l = 0 (using diff[26]), see Section 

2.3.2.1.2 for details. The term α arises from comparison of fingerprints and the term β 

from comparison of uncompressed traces. Note that, in practice, most traces will be 

filtered out at high levels of compression and that the length of fingerprints, by 

construction, should be small. 

The algorithm for comparison within a set of traces calls a recursive procedure 

“compare” (given in Figure 6). The running time, T, of the function “compare” can be 

represented as 

 ( )
1

(| |) | | / compare( ),
a

i S
i

T S T S b
=

= +⎢ ⎥⎣ ⎦∑ P  (2.6) 

where SP  is a set of properties of traces in set S. Coefficients bi (fraction of elements in 

S) and a (number of clusters) change at each iteration − they are obtained from the 

clustering procedure (called from “compare”) and will depend on SP . 

The problem formulated in (2.6) is too general and, to the best of our knowledge, cannot 

be “unraveled” without knowing distributions of the parameters bi and a. The worst-case 

scenario is when a=1 and bi=1, i.e., members of the set S cannot be partitioned into 

subsets since they are too close to each other. In this case 

 ( ) ( ) ( )
2
0

max 2 2 2 2 2 2 2 2
2 0 0[ ( )] | | | | | | .

lKL L

lC P S S KN L S N L S N L
<

∈ + =
� �� � � � � �

O O O  (2.7) 

In closing, the worst-case scenario computational time for P1(t,S) grows linearly with the 

number of traces, and quadratically with the number of processes per trace and the length 
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of traces. The algorithm P2(T,S) is quadratic in the number of traces, the number of 

processes per trace and the length of traces. 

Assume that compression level l is in the range 

[0, 1, … , N], where 0 is an uncompressed trace level and N is a fingerprint 

containing the least amount of information. The initial set of traces is given by trace 

set S. S(i) returns the i-th member of the set S. Array Td (of size N+1) contains the 

maximum measures of distance between traces for different compression levels. 

Maximum percentage [0,1] of non-matching processes is denoted by Tp. Global 

variable Sout stores similar clusters of traces. 

//Transform 2-tuples distance measure into a scalar 

Procedure condense_tuple(d, p, Tp) 

 if p > Tp 

  m ← ∞; 

 else 

  m ← d; 

 return m; 

//recursive comparison function (note that recursion can be //“unraveled” by parsing 

the tree in breadth) 

Procedure compare (trace_set, l, Td, Tp)  

 //calculate distance matrix D between traces 

 M ← cardinality(trace_set); 

 for i=1 to M 

  for j=i+1 to M //D is symmetric 

   (d, p) ← compare_traces(trace_set(i), trace_set(j), l); 

   D(i, j) ← condense_tuple(d, p, Tp); 

 //Cluster traces using distance data in D  

 clusters ← cluster(D, Td(l));  

 if (l > 0) 

  for each cluster in clusters 



 

 

31

   compare(cluster, l − 1, Td, Tp) 

 else //reached uncompressed level   

  add trace_set to Sout; 

//main procedure 

Procedure P2(S) 

 Set Td and Tp; 

 compare (S, N, Td, Tp);   

 return Sout ; 

Figure 6. Algorithm for comparing traces within a given set S. 

2.4.1.2 Special Cases 

We identify two cases where the direct comparison approach is more efficient than the 

iterative-unfolding approach. The first case occurs when the traces of interest are very 

similar; the traces won’t be filtered out at higher levels of comparison and so direct 

comparison becomes necessary at the uncompressed level. The second case occurs when 

the traces are small (i.e., the length of the processes in the traces is comparable to the 

length of the fingerprints) and the traces consist of only a few processes so comparison 

times between the iterative-unfolding approach and uncompressed comparisons would be 

more or less equivalent. Note that if the number of processes is large, our approach may 

yield superior results by aggregating information from different processes into a single 

fingerprint. In all other cases, our approach is superior. 

An additional case occurs when one needs to identify identical traces (e.g., for 

identification of duplicate test cases). Two iterations are needed in this case. The first one 

uses hashes of processes as fingerprints. The second iteration is needed to verify the 

result of first iteration by analyzing uncompressed traces (the Levenshtein distance [18] 

between processes should be equal to 0). 
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2.4.2 Method Accuracy 

In order for the iterative-unfolding approach to be accurate, similar traces must not be 

accidentally discarded at high levels of compression (we throw away all traces farther 

apart than a level-specific threshold). To accomplish this, we must carefully select the 

threshold’s values for distance measures12 between traces. General guidance is given by 

the following conjecture (axiomatic in nature). 

We conjecture that for every distance threshold Tk+1 > 0 at level k + 1 there exists 

another threshold Tk > 0 for level k, such that if dk+1(A,B) > Tk+1 then dk(A,B) > Tk. 

(where dj(A,B) represents the measure of distance between traces A and B at 

compression level j). This conjecture is reasonable but we have not proved it, nor 

do we have an explicit way to compute Tk from Tk+1 except in some special cases 

as detailed below. Traces A and B are considered dissimilar at compression level j 

if  dj(A,B) > Tj. If they are not dissimilar, they are considered to be similar. Our 

conjecture now states that if two strings are dissimilar at a high level of 

compression, they will also be dissimilar at the corresponding lower level of 

compression. For the example of strings with N letters, each taking two values, 

where lexical distance d0 is between 0 and N and letter count distance d1 is also 

between 0 and N, T:=T1= T0. In this case, it follows that if two compressed strings 

are dissimilar at level 1 with threshold T, they must also be dissimilar at 

uncompressed level 0 at the same threshold T. 

If this conjecture holds, an analyst can specify the desired zero compression threshold T0 

and use the conjecture backwards to generate thresholds for all other levels T1, …, TK, 

where K is the highest level of compression13. 

                                                 
12 Examples of measures of distance are given in Section 2.3.2.1.2. 
13 In the trivial case of finding identical traces the measure of distance will be equal to 0 for all levels of 
compression. Note there is no general way to determine a bound on the fingerprint distance given a bound 



 

 

33

The iterative-unfolding algorithms (described in Section 2.3.2) can then be applied to 

traces of interest (starting at level K). There will be no false removals of similar traces 

assuming the conjecture holds. 

Dissimilar traces are rapidly rejected. Clearly there will be special cases when our 

method will fail to filter out distant traces. For example, consider a pair of strings “aabb” 

and “bbaa”. The character frequencies of these two strings are identical, so any p-norm 

distance or our metrics (2.1) and (2.2) will show that these two strings are identical at the 

1-word level (sequences of strings of length 1). However, the Levenshtein distance 

between the uncompressed strings will take the largest possible value of 4. Note that the 

fraction of such string pairs from the total number of permutations decreases rapidly with 

the growth of string length and dictionary size (number of distinct words), i.e., such 

events should be rare. For example, percentage of non-filtered strings of length N=2 and 

letter dictionary of size d=2 is 12.5%; string of N=2 and d=4 is 4.69%; string of N=6 and 

d=2 is 0.05%; and strings of N=6 and d=4 is 0.04%. 

2.4.3 Iteration-unfolding overheads 

Prior to comparing traces, there is a need to generate the fingerprints, which consumes 

time and storage space. However, the benefit of the proposed approach would outweigh 

the time overhead because in a test environment we would expect that fingerprinted 

traces would be repeatedly used for comparison purposes. While the overhead due to 

storage does exist, we anticipate that this would not be too significant. 

                                                                                                                                                 

 
on the final edit-distance metric, since strings of any and all final edit-distance metrics are mapped into 
compressed fingerprints with any and all compressed level distances. 
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2.5 Implementation 
With reference to Figure 1, such traces can be automatically produced by suitably 

instrumenting the application software. During software execution, multiple processes 

invoking different threads can run in parallel. Thus, a trace can consist of multiple 

execution paths collected from the individual processes executed during the software run.  

The current implementation uses ten levels of compression. The lowest level of 

compression is denoted by L0; the highest by L9. For a given trace, we have:  

L0. Uncompressed trace, 

where each process within the trace is represented by a separate fingerprint. We now 

condense the fingerprinted information for each process in L0 to obtain, independently, 

levels L1 to L5: 

L1. List of 2-words14 with frequency information (FI), 

L2. List of 1-words with FI, 

L3. List of function names with FI, 

L4. List of components with FI, 

L5. List of components without FI. 

Finally, the fingerprinted information from different processes at level L0 is merged into 

a single fingerprint per trace. This speeds up comparison, because pair-wise comparison 

of processes reduces to a single comparison for each pair of traces. 

L6. Merged list of function names with FI, 

                                                 
14 An l-word represents a continuous substring of length l from a string. A trace can be represented as a 
string, where each trace element is a character; see Section 3.2.1.1 for details. 
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L7. Merged list of function names without FI, 

L8. Merged list of components with FI, 

L9. Merged list of components without FI. 

We use MU measure of distance for L0, ( , )kM X Y for levels with frequency information, 

and *( , )kM X Y for levels without frequency information. The choice of the number of 

compression levels depends on such factors as: the number of levels of abstractions of 

traces considered appropriate due to variety and complexity of program constructs, 

application domain complexity, and the size of the trace dataset. In essence, the greater 

the variability in traces, the greater the chance that a higher number of compression levels 

are required. In our study, we decided to have ten levels. The comparison process, 

including clustering, is implemented based on the algorithms described in Section 2.3.2.2. 

The tool’s prototype is implemented in Perl. 

2.6 Validation Case Study 
Our experimental ground is the complex system alluded to Section 2.1. Out of hundreds 

of thousands of test cases (from all phases of testing) that in some cases have a legacy of 

more than ten years, we gathered 1416 multithreaded tests cases from 21 test suites 

covering various features of the SUS15. An internal capturing facility gathers and stores 

execution paths and then outputs them in the format shown in Figure 1. 

The captured 1416 traces consist of 73763 processes. Descriptive statistics of the 

distributions of process-length, trace-length and the number of processes per trace are 

given in Table 3. 

                                                 
15 While there are thousands of execution traces in the SUS trace-database, it takes time to prepare them 
for trace analysis (e.g., due to analysing and modifying individually the test-suite scripts). This is an on-
going process in  our research to gather more traces. 
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We created fingerprints for the traces using the 10 levels of compression described in 

Section 2.5. The total space overhead is 9.1% (of the space needed to store the raw 

traces), which makes it feasible to store the fingerprints. 

Table 3. Descriptive statistics of traces 
Distribution of Min Mean Max 

number of processes per trace 2.00E0 5.21E1 1.41E3 
process-length 1.00E0 3.70E4 1.51E8 
trace-length 4.26E2 1.93E6 1.55E8 

To validate the comparison of a single trace against a set of traces, we randomly picked 

a trace from our experimental set of 1416 traces and compared it against a random subset 

of traces from the experimental set. Such comparisons were performed 450 times (i.e., 30 

draws of subsets of different sizes: 10 to 1410 traces with a step-size of 100). All 

computations were performed on an Intel Xeon™ 5160, 3.0 GHz Dual Core computer.  

The execution time results are shown in Figure 7, where the different trace subset-sizes 

(10, 110, 210, etc.) are shown on the X-axis and the execution times on the Y-axis. We 

see that the computational time for each draw (denoted by circles) splits into two 

patterns: the first, where computation time is less than 5 seconds, and the second, where 

the computational time is of the order of 250 seconds. The first pattern (lower part of the 

figure) represents the situation when there are no similar traces in the reference subset; 

and, therefore, all traces are eliminated at high levels of compression. The second pattern 

(upper part of the figure) represents the situation when the residual traces in the reference 

subset (after elimination) are the same (or very similar to one another). Since these traces 

are at lower levels of compression, the comparison times are high. The frequency-counts 

of the number of comparisons (totalling 30 for any subset-size) are shown with the lines 

(right vertical axis). The solid line shows the number of comparisons in the lower pattern, 

while the dotted line shows this in the upper pattern. Note that for the first pattern, the 

execution time grows linearly with the increase of the subset-sizes (R2 = 0.998 and p-

value < 2.2×10-16). However, for the second pattern, even though execution times are 

constant, the variance of 5.4 seconds in execution times masks the linear growth of 
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approximately 0.4 seconds over 100 traces. Because the algorithm performs pair-wise 

comparison of processes at the higher levels of compression (L0-L5), we might expect 

execution time to grow cubicly (the number of operations is proportional to the number 

of traces multiplied by the number of pair-wise process comparisons). However, since 

most of the traces are filtered out at the higher levels of compression, where information 

about traces is discarded (L6-L9), the complexity is reduced to linear. 

Figure 8 and Figure 9 show the results of comparing within the given set of traces (i.e., 

clustering).  The experimental set-up here is similar to the one described earlier. Figure 8 

shows, based on regression analysis, that the execution time for clustering grows 

quadratically (R2 = 0.991 and p-value < 10-16) with the growth of the subset-sizes (≈23.0 

seconds per 100 traces). As with the first experiment, the influence of pair-wise thread 

comparison is negligible, since most of the traces are discarded at the higher levels of 

compression (L6-L9). Therefore, comparison time grows quadratically and not 

quartically (regression analysis confirms this observation). Figure 9 shows that 85 to 90 

percent of traces are filtered out after six iterations (start to L4) of clustering. Again, this 

demonstrates that the approach is scalable. When we compare these results with the 

results of the case study that we performed on a dataset of 116 traces [24], we see that 

additional levels of compression are needed with increase of the dataset size. In [24] most 

of the traces were filtered out after 4 iterations (start to L6), majority of the clusters were 

eliminated by that time as well.  
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Figure 7. Timing of comparing a trace against a set of traces; timing for each draw 

is denoted by circles; values are plotted on the left axis. Solid line shows the number 

of comparisons in the lower pattern; dotted line in the upper pattern; values of both 

lines are plotted on the right vertical axis. 

If we assume that the behavior of our algorithms will hold for larger datasets, then we can 

predict the time needed to perform computations for large values of |S| by extrapolating 

fitted regression. 

The results of extrapolation for the algorithm P1(t,S) are given in Figure 10a. In order to 

compare a single trace with a set of 10,000 traces, an analyst will need ≈39 seconds (on 

average) to filter out dissimilar traces, plus an additional 250 seconds for comparing 

every trace in S so similar to t that it should be compared with t at the uncompressed 

level. The typical and frequent situation for application of this algorithm is when a defect 

is found in the field, and the analyst, upon obtaining a UT from the user, needs to 

compare it against all HTs to identify missing coverage where a defect may potentially 

reside. 
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Figure 8. Timing of comparing traces within a given set 
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Figure 9. Number of traces remaining after each iteration of comparing traces 

within a given set 
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Figure 10b shows the extrapolated data for the algorithm P2(S). In order to perform 

filtering within a set of 10,000 traces, an analyst will need 2.3 ×105 seconds (≈2.6 

days)16. This type of analysis is useful for customer profiling, identification of redundant 

test cases, etc. Note that such analysis is typically infrequent in a production 

environment. 

As described in the Introduction section, our attempt to experiment with the kBehaviour 

prototype [15] clearly indicated that the performance of the SIFT algorithm is better than 

that of the kBehaviour approach. 

We also compared the execution time of comparing a pair of traces using our technique 

and comparing the same pair of traces using diff [26]. Processes within traces were 

compared pair-wise. Traces were represented using text files with each trace record 

stored on a separate line. The SIFT approach significantly outperforms diff. For example, 

the comparison of a medium size trace T1 (113 processes, ≈106 elements) with a small 

trace T2 (40 processes, ≈103 elements) took 0.02 seconds with our iterative-unfolding 

technique and 1476 seconds with diff. The comparison of T1 with another medium size 

trace T3 (147 processes, ≈106 elements) took 0.05 seconds using our technique and 

12635 seconds with diff. Further tests were just as confirmatory. Thus, we can see that 

direct comparison using diff does not scale. This can be explained two ways. First, the 

complexity of comparing two different strings with diff is quadratic [26]. Second, since 

we need to compare each pair of processes independently, the complexity increases 

quadratically with an increase in the number of processes. 

 

                                                 
16 Note that our prototype is implemented in Perl; a production version in C/C++ would be faster. 
Additional increase in speed should result from parallelisation of the algorithms. 
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Figure 10. Predicted time (dotted lines represent 95% confidence bands) for (a) 

P1(t,S) − linear, and (b) P2(S) − quadratic, based on extrapolation of the fitted 

regression. 
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2.7 Conclusion And Future Work 
The comparison of traces resulting from the execution of a software system is of 

considerable interest for a variety of purposes, such as software testing [1-3], program 

comprehension [13-15], and security [11].  In this paper, we have proposed a new, 

iterative-unfolding, approach (called SIFT) for filtering-out traces to help speed up the 

overall comparison process.  

The essence of this approach is that it iteratively compares traces at different levels of 

compression, from high to low, and in the process it rapidly eliminates dissimilar traces, 

eventually leaving residual, similar, traces at the lowest level of compaction. Once 

similar traces are identified, they can be passed to external tools for further analysis. We 

use fingerprinting techniques for compressing traces, and comparison and clustering 

algorithms for identifying similar traces.  

Our approach can be packaged as a framework, where the component algorithms and 

techniques can be replaced with alternate techniques making the framework portable to 

other development environments. Further details are web-accessible from [24, Section 5], 

where also details of the usage environment of this technology are described (see [24, 

Section 6]).  

The paper describes a significant case study involving 1416 traces from a large, 

distributed software system in use at numerous sites worldwide. The efficiency of the 

approach is linear with the growth of the number of traces when comparing a trace 

against a set of traces, and quadratic when comparing within a set of traces using 

clustering techniques (see Figure 10). The timings from the case study data are feasible in 

a practical environment. From these results, we thus conclude that the iterative-unfolding 

approach is scalable for use in a practical environment 

We plan to conduct a number of further case studies. These include, for example, 

increasing the dataset size; validation of set-to-set comparisons; and cost-benefit analysis 
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in a practical environment. Our tool development effort is on-going with the long-term 

goal being to transfer the technology to the production environment. 
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Chapter 3  

3 Using Entropy Measures for Comparison of Software 
Traces  

The analysis of execution paths (also known as software traces) collected from a given 

software product can help in a number of areas including software testing, software 

maintenance and program comprehension. 

In this chapter, we study the applicability of Shannon entropy and three extended 

entropies (Landsberg-Vedral, Rényi, and Tsallis) to the classification of traces related to 

various software defects. Our validation study shows the three extended entropies, with 

parameters chosen to emphasize rare events, show good performance. 

3.1 Introduction 
A software execution trace can be thought of as a log of information captured during any 

particular execution-run of software. For example, a trace in Figure 11 shows the 

program flow entering function f1; calling f2 from f1; f2 recursively calling itself, and, 

eventually, exiting these functions. In order to capture this information, each function in 

the software is instrumented to log entry and exit points to a function. 

 

   

 

Figure 11. An example of a trace 

The comparison of program execution traces is important for a number of problem areas 

in software development and use. In the area of testing, for example, such comparisons 

are used to: 1) determine how well user execution paths (traces collected in the field) are 

1           f1 entry
2           | f2 entry 
3           | | f2 entry 
4           | | f2 exit 
5           | f2 exit 
6           f1 exit 
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covered in testing [3, 7, 29]; 2) detect anomalous behavior arising during a component's 

upgrade or reuse [14]; 3) map and classify defects [9, 18, 24]; 4) determine redundant test 

cases executed by one or more test teams [20]; and 5) prioritize test cases (to maximize 

execution path coverage with a minimum number of test cases) [8, 15]. Trace 

comparisons are used also in operational profiling (for instance, in mapping the 

frequency of execution paths used by different user classes) [29] and intrusion analysis 

(e.g., detecting deviations of field execution paths from expectations) [13]. 

For some problems, such as test case prioritization, traces gathered in a condensed form 

(such as a vector of executed function names or caller-callee pairs) are adequate [8]. 

However, for others, such as the detection of missing coverage and anomalous behavior 

using state machines, detailed execution paths are necessary [3, 14]. The time required 

for analyzing traces can sometimes be extremely important. For instance 1) a customer 

support analyst using traces to map a reported defect onto an existing set of defects to 

identify the problem's root cause and advise a customer on how to fix her problem, and 2) 

a development analyst working with the testing team to identify missing coverage that 

resulted in a field defect. 

Many trace comparison techniques are not scalable [16, 5]. Based on our experience, 

support personnel of a large-scale industrial application with hundreds of thousands of 

installations can collect tens of thousands of traces per year. Moreover, a trace collected 

on a production system is populated at a rate of millions of records per minute. 

The described need to compare traces, together with a lack of reliable and scalable tools 

for doing this, motivated us to investigate alternate solutions. To speed up trace 

comparisons, we propose that traces first be filtered out from the given set, rejecting 

those that are not going to match with the test cases, allowing just the remaining few to 

be compared for target purposes. The underlying assumption (based on our practical 

experience) is that most traces are not even close to being similar, just a few are similar, 

and only a very few are identical. 
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This strategy is implemented and validated in the Scalable Iterative-unFolding Technique 

(SIFT) [16]. The collected traces are first compressed into several levels prior to 

comparing them. Each level of compression uses a unique signature, which we call a 

“fingerprint”17. Starting with the highest compression level, the traces are compared, and 

unmatched ones are rejected. Iterating through the lower levels until the comparison 

process is complete leaves only traces that match at the lowest (or uncompressed) level. 

The SIFT objective ends here. The matched traces can then be passed on to external tools 

for further analysis such as defect or security breach identification. 

The process of creating a fingerprint can be interpreted as a map from the very high 

dimensional space of traces to a low, ideally one-dimensional, space. Simple examples of 

such fingerprints are 1) the total number of unique function names in a trace and 2) the 

number of elements in a trace. However, while these fingerprints may be useful for our 

purposes, neither are sufficient. The “number of unique function names” fingerprint 

doesn't discriminate enough: many quite dissimilar traces can share the same function 

names called. At the other extreme, the number of elements in the trace discriminates too 

much − traces which are essentially similar may have varying numbers of elements. The 

mapping should be such that projections of traces of different types should be positioned 

far apart in the resulting small space. 

Using the frequency of the function names called is the next step in selecting useful 

traces. A natural one dimensional representation of this data is the Shannon information 

[21], mathematically identical to the entropy of statistical mechanics. Other forms of 

entropy information, obeying slightly less restrictive axioms, have been defined [1]. 

These extended entropies (as reviewed in [4] are indexed by a parameter q  which, when 

= 1q  reduces them to the traditional Shannon entropy and which can be set to make them 

more ( < 1q ) or less ( > 1q ) sensitive to the frequency of infrequently called functions, 

                                                 
17 The fingerprint of the next iteration always contains more information than the fingerprint of the 
previous iteration, hence the term unfolding.  
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improving the classification power of algorithms. Indeed, an extended Rényi entropy [19] 

with = 0q  returns the “number of unique function names” fingerprint, the Hartley 

entropy of information theory. 

The entropy concept can also be extended in another way. Traces differ not only in which 

functions they call but in the pattern linking the call of one function with the call of 

another. As such it makes sense to collect not only the frequency of function calls, but 

also the frequency of calling given pairs, triplets, and in general l -tuples of calls. The 

frequency information assembled for these “ l -words” can be converted into “word 

entropies”, for further discriminatory power. In addition each record in a trace can be 

encoded in different ways (denoted as c ) by incorporating various information such as a 

record's function name or type. 

In this paper we study the applicability of the Shannon entropy [21] and the Landsberg-

Vedral [12], Rényi [19], and Tsallis [22] entropies to comparison and classification of 

traces related to various software defects. We also study the effect of q , l , and c  values 

on the classification power of the entropies. Note that the idea of using word entropies for 

classification problems in general is not a new contribution of this paper. 

Similar work has been done to apply word entropies classification problems in 

bioinformatics [23] and in the analysis of natural languages [6]. However, to the best of 

our knowledge, no one has applied word entropies to compare software traces (although 

[28] suggested using Shannon entropy to measure the complexity of software traces). 

The structure of the chapter is as follows: in Section 3.2 we define entropies and explain 

the process of trace entropy calculation. The way in which entropies are used for trace 

classification is shown in Section 3.3. A case study describing and validating the 

applicability of entropies for trace classification is shown in Section 3.4. Finally, Section 

3.5 summarizes the chapter. 



 

 

50

3.2 Entropies and Traces: definitions 
In this section, we describe techniques for extracting the probability of various events 

from traces (Section 3.2.1) and usage of this information to calculate entropies of traces 

(Section 3.2.2). 

3.2.1 Extraction of probability of events from traces 

A trace can be represented as a string, where each trace record is encoded by a unique 

character. There exists a number of ways to encode the character. We concentrate on the 

following three character types c : 

1. Record's function name ( F ), 

2. Record's type ( FT ), 

3. Record's function names, type, and depth in the call tree ( FTD ).  

In addition, we can generate consecutive and overlapping substrings18 of length l  from a 

string. We call such substrings l -words. For example, a string “ABCA” contains the 

following 2-words: “AB”, “BC”, and “CA”. 

One can think of a trace as a message generated by a source with source dictionary 

1 2= { , , , }nA a a a…  consisting of n  l -words ia , and discrete probability distribution 

1 2= { , , , }nP p p p… , where ip  is probability of ia . The dictionaries A  and their 

respective probability distributions P  for various values of c  and l  for the trace given in 

are shown in Table 4.  

 

 

                                                 
18 The substring can start at any character i , where 1i n l≤ − + . 
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Table 4. Dictionaries of a trace given in Figure 11 

C  l  n  A  P  
F   1   2   f1, f2  1/3, 2/3  
F   2   3   f1-f2, f2-f2, f2-f1  1/5, 3/5, 1/5 
F   3   3   f1-f2-f2, f2-f2-f2, f2-f2-f1   1/4, 1/2, ¼  
FT   1   4   f1-entry, f1-exit, f2-entry, f2-exit   1/6, 1/6, 1/3, 1/3 
FTD   1   6  f1-entry-depth1, f1-exit-depth1, f2-entry-depth2, 

f2-exit-depth2, f2-entry-depth3, f2-exit-depth3 
1/6, 1/6, 1/6,  
1/6, 1/6, 1/6, 

Let us define a function α  that, given a trace t , will return a discrete probability 

distribution P  for l -words of length l  and characters of type c : 

 ( ; , ).P t l cα←  (3.1) 

The above empirical probability distribution P  can now be used to calculate the entropy 

of a given trace for a specific l -word with characters of type c . We suppress the 

dependence of P  (and the individual ip s) on t , l , and c . Let us now define entropies 

and discuss how we can utilize P  in calculation of these entropies. 

3.2.2 Entropies and traces 

The Shannon entropy [21] is defined as 

 
=1

( ) = log ,
n

S i b i
i

H P p p−∑  (3.2) 

where P  is the vector containing probabilities of the n  states, and ip  is the probability 

of i -th state. Logarithm base b  controls the units of entropy. In this paper we set = 2b , 

measuring entropy in bits. 

Three extended entropies, Landsberg-Vedral [12], Rényi [19], and Tsallis [22] are 

defined, respectively as:  
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where 0q ≥  is the entropy index and 
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The extended entropies reduce to the Shannon entropy (by L'Hôpital's rule) when = 1q . 

The extended entropies are more sensitive to states with small probability of occurrence 

than the Shannon entropy for 0 < < 1q . Setting > 1q  leads to increased sensitivity of the 

extended entropies to states with high probability of occurrence. 

The entropy, Z , of a trace, t , for a given l , c , and q  is calculated by inserting the 

output of Equation (3.1) into one of the entropies described in Equations (3.2) and (3.3): 

 [ ]( ; , );EZ H t l c qα←  (3.5) 

where { , , , }E L R T S∈ . Note that if =E S , this is the Shannon entropy and q  is ignored. 

3.3 Usage of entropies for classification of traces 
A typical scenario for trace comparison is the following. A software service analyst 

receives a phone call from a customer reporting software failure. The analyst needs to 

quickly determine the root cause of this failure and identify if 1) this is a rediscovery of a 

known defect exposed by some other customer in the past or 2) this is a newly discovered 

defect. If the first hypothesis is correct, then the analyst will be able to quickly provide 

the customer with a fix or describe a workaround for the problem. If the second 

hypothesis is correct the analyst must alert the maintenance team and start a full scale 
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investigation to identify the root-cause of this new problem. In each case, time is of the 

essence -- the faster the root cause is identified, the faster the customer will receive a fix 

to the problem and become less unsatisfied. 

In order to validate the first hypothesis, the analyst asks the customer to reproduce the 

problem with a trace capturing facility enabled. The analyst can then compare the newly 

collected trace against a library of existing traces collected in the past (with known root-

causes of the problems) and identify potential candidates for rediscovery. To identify a 

set of traces related to similar functionality the library traces are usually filtered by names 

of functions present in the trace of interest. After that the filtered subset of the library 

traces is examined manually to identify common patterns with the trace of interest. 

If the analyst finds an existing trace with common patterns then the first hypothesis holds. 

Otherwise the analyst concludes19 that this failure relates to a newly discovered defect 

and that the second hypothesis is valid. With tens of thousands of traces in the library the 

manual approach becomes laborious. This process is similar in nature to usage of an 

Internet search engine. A user provides to the search engine keywords of interest and the 

engine's algorithm returns a list of web pages ranked according to their relevance to 

keywords. The user examines the returned pages to identify pages most relevant to her. 

To automate this approach using entropies as fingerprints, we need an algorithm that 

would compare a trace against a set of traces, rank this set based on the relevance to a 

trace of interest, and then return the top X  closest traces for manual examination to the 

analyst. In order to implement this algorithm, we need a measure of distance between a 

pair of traces to quantify their closeness described in Section 3.3.1, and the ranking 

algorithm described in Section 3.3.2. Efficiency of the algorithm is analyzed in 

                                                 
19 This is a simplified description of the analysis process. In practice the analyst will examine defects with 
similar symptoms, consult with her peers, search a database with descriptions of existing problems, etc.  
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Section 3.3.3. A drawback associated with usage of entropies as fingerprints is shown in 

Section 3.3.4. 

3.3.1 Measure of distance between a pair of traces 

We can obtain multiple entropy-based fingerprints for a trace by varying values of E , q , 

l  and c . Let us denote a complete set of 4-tuples of [ , , , ]E q l c  as M . We define the 

distance between a pair of traces it  and jt  as:  

 
[ ]

[ ]{ }

2

=1

( ; , ); ( ; , );
( , ; ) = ,

max ( ; , );

m E i k k k E j k k kk k
i j

k E k k kk

H t l c q H t l c q
D t t M

H t l c q

α α

α

⎧ ⎫⎡ ⎤−⎪ ⎪⎣ ⎦
⎨ ⎬
⎪ ⎪⎩ ⎭

∑  (3.6) 

where m  is the number of elements in M , and [ ]{ }max ( ; , );E k k kk
H t l c qα  denotes the 

maximum value of Ek
H  for the complete set of traces under study for a given kq , kl , and 

kc . This denominator is used as a normalization factor to set equal weights to fingerprints 

related to different 4-tuples in M . 

Formally (3.6), satisfies three of the four usual conditions of a metric:  

 

( , ; ) 0,

( , ; ) = ( , ; ),

( , ; ) ( , ; ) ( , ; ).

i j

i j j i

i k i k k j

D t t M

D t t M D t t M

D t t M D t t M D t t M

≥

≤ +

 (3.7) 

However, the fourth condition ( , ; ) = 0 =i j i jD t t M t t⇔  (identity of indiscernibles) holds 

true only for the fingerprints of traces; the actual traces may be different even if their 

entropies are the same. In other words, the identity of indiscernibles axiom only “half” 

holds: = ( , ; ) = 0,i j i jt t D t t M⇒  but ( , ; ) = 0 = .i j i jD t t M t t⇒  As such, D  represents a 

“pseudo-metric”. Note that ( , ; ) [0, )i jD t t M ∈ ∞  and our hypothesis is the following: the 

smaller the value of D , the closer the traces. 
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Note that for a single pair of entropy-based fingerprints the normalization factor can be 

omitted and we define D  as  

 [ ]( , ; , , , ) = ( ; , ); ( ; , ); .i j E i E jD t t E q l c H t l c q H t l c qα α⎡ ⎤− ⎣ ⎦  (3.8) 

We now define an algorithm for ranking a set of traces with respect to the trace of 

interest. 

3.3.2 Trace-ranking algorithm 

Given a task of identifying top X  closest classes of traces from a set of traces, T , closest 

to trace t  we resort to the following pseudo-algorithm: 

1. Calculate distances between t  and each trace in T ; 

2. Order traces in T  by their distance to trace t  in ascending order;  

3. Replace the vector of sorted traces with the vector of classes (e.g., defect IDs) to 

which these traces map;  

4. Keep the first occurrence (i.e., the closest trace) of each class in the vector and 

remove the rest;  

5. Calculate the ranking of classes taking into account ties using the “modified 

competition ranking”20 approach;  

6. Return a list of classes with ranking smaller than or equal to X .  

                                                 
20 The “modified competition ranking” assigns the same rank to items compared equal and leaves the gap 
before the set of the items with the same rank. For example, if A is ranked ahead of B and C (considered 
equal), which in turn are ranked ahead of D then the ranks will be performed a follows: A gets rank 1, B 
and C gets rank 3, and D gets rank 4. 
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The “modified competition ranking” can be interpreted as a worst-case-scenario 

approach. The ordering of traces of equal ranks is arbitrary; therefore we are looking at 

the case when the most relevant trace will always reside at the bottom of the returned list. 

To be conservative, we consider the outcome in which our method returns a trace in the 

top X  positions as being in the X -th position. 

Now consider an example of the algorithm: 

3.3.2.1 Traces ranking algorithm: example  

Suppose that we have five traces it , = 1..5i . The traces related to four software defects 

jd , = 1..4j  as shown in Table 5. 

Table 5. Example: Relation between traces and defects. 
Defect Trace 

1d    5t   

2d    1 3,t t   

3d    4t   

4d    2t   

Suppose that we calculate distances between traces using some measure of distance. The 

distances between trace t  and 1..5t  and the defects' ranks obtained using these 

hypothetical calculations are given in Table 6. The traces are ranked based on the 

modified competition ranking schema. Trace 2t  is the closest to t , hence 4d  (to which 2t  

is related) gets ranking number 1. Traces 1t  and 4t  have the same distance to t , therefore, 

2d  and 3d  get the same rank. Based on the ranking schema algorithm we leave a gap 

before the set of items with the same rank and assign rank 3 to both classes. Traces 3t  and 

5t  also have the same distance to t ; however 3t  should be ignored since it relates to the 

already ranked defect 2d . This leads to assigning rank 4 to 1d . The resulting sets of top 

X  traces for different values of X  are shown in Table 7. 



 

 

57

Table 6. Example: Traces sorted by distance and ranked 

it  Distance between  t  and it  Class (defect ID) of trace it  Rank 

2t    0   4d    1  

1t    7   2d    3  

4t    7   3d    3  

3t    9   2d    --  

5t    9   1d    4  

Table 7. Example: Top 1-4 defects 

  Top X   Set of defects in Top X  
Top 1   4d   
Top 2   4d   
Top 3   4d , 2d , 3d   
Top 4   4d , 2d , 3d , 1d   

3.3.3 Traces ranking algorithm: efficiency 

The number of operations C  needed by the ranking algorithm is given by 
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Step2

| |) ,T
������	�����


 (3.9) 

where ic  is a constant number of operations associated with i -th step, and | |⋅  represents 

the number of elements in a given set. The coefficients 3c , 4c  and 5c  are of much smaller 

order than 1c  and hence terms corresponding to Steps 3, 4 and 5 do not contribute 

significantly to C . Pair-wise distance calculation, using (3.6), requires (| |)O M  

operations. Therefore, calculation of distances between traces (Step 1) requires 

(| || |)O M T  operations. Assuming that | |M  remains constant, the number of operations 

grows linearly with | |T . The average sorting algorithm, required by Step 2 (sorting of 
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traces by their distance to trace t ), needs (| | log | |)O T T  operations [2]. Usually, 

1 2c c ; this implies that a user may expect to see linear relation between C  and | |T  

(even for large | |T ), in spite of the loglinear complexity of the second term in (3.9). 

The amount of storage needed for entropy-based fingerprints data (used by (3.6)) is 

proportional to 

 | || | | | = | | (| | 1),
a b

M T M M Tφ φ φ+ +
���	��
 ��	�


 (3.10) 

where φ  is the number of bytes needed to store a single fingerprint value. Term a  is the 

amount of storage needed for entropy-based fingerprints for all traces in T , and term b  

is the amount of storage needed for the values of [ ]{ }max ( ; , );E k k kk
H t l c qα  from (3.6). 

Assuming that | |M  remains constant, the data size grows linearly with | |T . 

3.3.4 Entropies as fingerprints: drawback 

The drawback associated with entropies comes from the fact that entropies cannot 

differentiate dictionaries of events, since entropy formulas operate only with probabilities 

of events. Therefore, entropies of strings “f1-f2-f3-f1” and “f4-f5-f6-f4” will be exactly 

the same for any value of E , l , c , and q . The simplest solution is to do a pre-filtering of 

traces in T  in the spirit of the SIFT framework described in Section 3.1. For example, 

one can filter out all the traces that do not contain “characters” (e.g., function names) 

present in the trace of interest before using entropy-based fingerprints. 

3.4 Validation case study 
We hypothesize that predictive classification power will vary with change in E , l , c , 

and q . In order to study the classification power of [ ]( ; , );EH t l c qα  we will analyze 

Cartesian products of the following sets of variables: 

1. ( , , , )E S L R T∈ ,  
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2. (1, 2, ,7)l ∈ … ,  

3. 5 4 1 2(0,10 ,10 , ,10 ,10 )q − −∈ … ,  

4. ( , , )c F FT FTD∈ .  

Let us denote the complete set of parameters obtained by the Cartesian product as Λ . 

Our software under study, called the Siemens suite, was first developed by Hutchins et al. 

[10] at the Siemens Corporate Research. It was further augmented and publicly made 

available at Software-artifact Infrastructure Repository [27, 26]. This software suite has 

been used by a large number of studies on defect analysis in the last decade (see [11, 17] 

for literature review). 

The Siemens suite [10] contains seven programs. Each program has one original version 

and a number of faulty versions. A faulty version is a variant of the original version by 

one fault. A fault (changed source code from the original version) was seeded manually 

by Hutchins et al. [10]. A fault can span over multiple lines of source code and multiple 

functions. Each program comes with a collection of test cases, applicable to all faulty 

versions and the original program. A fault can be identified if the output of a test case on 

the original version differs from the output of the same test case on a faulty version of the 

program. 

In this study, we experimented with the largest program “Replace” of the Siemens suite. 

It has 517 lines of code, 21 functions, 31 different faulty versions. There were 5542 test 

cases shared across all the versions. Out of these 31 5542×  test cases, 4266 ( 2.5%≈  of 

the total number of test cases) caused a program failure when exposed to the faulty 

program, i.e., were able to catch a defect. The remaining test cases were probably 

unrelated to the 31 defects. The traces for failed test cases were collected using a tool 

called Etrace [25]. The tool captures sequences of function calls for a particular software 
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execution such as the one shown in Figure 11. In other words, we collected 4266 

function-call level failed traces for 31 faults (faulty versions) of the “Replace” program21. 

The distribution of the number of traces mapped to a particular defect (version) is given 

in Figure 12. Descriptive statistics of trace length are given in Table 8. The length ranges 

between 11 and 101400 records per trace; average length is 623 records per trace. 

Average dictionary sizes for various values of c  are given in Figure 13. Note that as l  

gets larger, the dictionary sizes for all c  start to converge. 

Table 8. Descriptive statistics of length of traces 
Min. 1st Qu. Median Mean 3rd Qu. Max. 

11   218  380  623.3  678   101400 

 

Figure 12. Distribution of the number of traces per defect (version) 

                                                 
21 The “Replace” program had 32 faults, but the tool “Etrace” was unable to capture the traces of 
segmentation fault in one of the faulty versions of the “Replace” program. This problem was reported also 
by other researchers [11]. 



 

 

61

 

Figure 13. Dictionary size for various values of l  and c  

Each of the traces contains at least one shared function. Therefore, we skip the pre-

filtering step. Note that direct comparison with existing trace comparison techniques is 

not possible since 1) the authors focus on identification of faulty functions [11, 17] 

instead of identification of defect IDs and 2) the authors [11] analyze a complete set of 

programs in the Siemens suite while we focus only on one program (Replace). 

The case study is split into three parts: 1) analysis of the individual classification power 

of each [ ]( ; , );EH t l c qα  in Section 3.4.1; 2) analysis of the classification power of the 

complete set of entropies in Section 3.4.2. 

3.4.1 Analysis of individual entropies 

Analysis of the classification power of individual entropies is performed using 10-fold 

cross-validation. The validation process is designed as follows: 

1. Randomly partition 4266 traces into 10 bins  
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2. For each set of parameters , , ,E l c q   

a. For each bin   

i. Tag traces in a given bin as a validating set of data and traces in 

the remaining nine bins as a training set  

ii. For each trace t  in the validating set calculate the rank of t 's class 

(defect ID) in the training set using the algorithm in Section 3.3.222 

with (3.8) as the measure of distance and with the set of parameters 

, , ,E l c q   

b. Average information about ranks of the “true” classes and store this data 

for further analysis  

Our findings show that the best results are obtained for H  with ( , , )E L R T∈ , = 3l , 
5 4(10 ,10 )q − −∈ , and =c FDT . Based on 10-fold cross validation, the entropies with 

these parameters were able to correctly classify 21.6% 1.1%≈ ± 23 of Top 1 defects and 

57.6% 1.5%≈ ±  of Top 5 defects (see Table 9 and Figure 14). Based on the standard 

deviation data in Table 9, all six entropies show robust results. However, the results 

become slightly more volatile for high ranks (see Figure 15). Let us analyze these 

findings in details. 

 

 

                                                 
22 Technically, in order to identify the true ranking one needs to tweak Step 6 of the algorithm and return a 
vector of 2-tuples [class, rank].  
23 95%  confidence interval, calculated as (0.975, 9) / 10 standard deviationq± × , where ( , )q p df  
represents quantile function of the t-distribution, where p is the probability and df  is the degrees of 
freedom. 
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Figure 14. Interpolated average fractions of correctly classified traces in Top 5 

(based on 10-fold cross validation) for =E L  and =c FDT . for different values of l  

and q . 
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Figure 15. Fraction of correctly classified traces in Top 5 for =E L , = 3l , 5= 10q − , 

and =c FDT . Solid line shows the average fraction of correctly classified traces in 

10 folds; dotted line shows pointwise 95%  confidence interval (95% CI) of the 

average. 
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Table 9. Fraction of correctly classified traces in Top X  for 1) [ ]( ; , );EH t l c qα  with ( , , )E L R T∈ , 5 4(10 ,10 )q − −∈ , = 3l , 

and =c FDT , and 2) set of entropies Λ ; based on 10-fold cross validation. Average fraction of correctly classified 

traces in 10 folds is denoted by “Avg.”; plus-minus 95%  confidence interval denoted by “95% CI”. 
 E = L E = R E = T Λ 

Top X q = 10-4 q =10-5 q =10-4 q =10-5 q =10-4 q =10-5  
 Avg. 95%CI Avg. 95%CI Avg. 95%CI Avg. 95%CI Avg. 95%CI Avg. 95%CI Avg. 95%CI 

1 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2972 0.0151 
2 0.3624 0.0180 0.3624 0.0180 0.3624 0.0180 0.3624 0.0180 0.3621 0.0180 0.3621 0.0180 0.4643 0.0189 
3 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.5790 0.0181 
4 0.5478 0.0164 0.5478 0.0164 0.5478 0.0164 0.5478 0.0164 0.5478 0.0165 0.5478 0.0165 0.6017 0.0165 
5 0.5764 0.0149 0.5764 0.0149 0.5764 0.0149 0.5764 0.0149 0.5766 0.0151 0.5766 0.0151 0.6153 0.0170 
6 0.5961 0.0174 0.5961 0.0174 0.5961 0.0174 0.5961 0.0174 0.5956 0.0177 0.5956 0.0177 0.6247 0.0179 
7 0.6076 0.0174 0.6076 0.0174 0.6076 0.0174 0.6076 0.0174 0.6076 0.0173 0.6076 0.0173 0.6322 0.0171 
8 0.6165 0.0166 0.6165 0.0166 0.6165 0.0166 0.6165 0.0166 0.6169 0.0165 0.6169 0.0165 0.6385 0.0170 
9 0.6212 0.0162 0.6212 0.0162 0.6212 0.0162 0.6212 0.0162 0.6228 0.0158 0.6228 0.0158 0.6416 0.0171 

10 0.6266 0.0167 0.6266 0.0167 0.6266 0.0167 0.6266 0.0167 0.6280 0.0163 0.6280 0.0162 0.6453 0.0173 
11 0.6310 0.0172 0.6310 0.0172 0.6310 0.0172 0.6310 0.0172 0.6331 0.0167 0.6331 0.0168 0.6472 0.0164 
12 0.6341 0.0177 0.6341 0.0177 0.6341 0.0177 0.6341 0.0177 0.6357 0.0175 0.6357 0.0175 0.6488 0.0164 
13 0.6357 0.0170 0.6357 0.0170 0.6357 0.0170 0.6357 0.0170 0.6381 0.0169 0.6381 0.0170 0.6495 0.0165 
14 0.6383 0.0173 0.6383 0.0173 0.6383 0.0173 0.6383 0.0173 0.6406 0.0170 0.6406 0.0169 0.6505 0.0161 
15 0.6416 0.0164 0.6416 0.0164 0.6420 0.0162 0.6416 0.0164 0.6432 0.0162 0.6432 0.0162 0.6512 0.0160 
16 0.6441 0.0167 0.6441 0.0167 0.6441 0.0167 0.6441 0.0167 0.6453 0.0166 0.6453 0.0166 0.6517 0.0159 
17 0.6463 0.0157 0.6465 0.0157 0.6463 0.0157 0.6465 0.0157 0.6474 0.0156 0.6477 0.0155 0.6528 0.0157 
18 0.6495 0.0147 0.6498 0.0146 0.6495 0.0147 0.6498 0.0146 0.6509 0.0144 0.6512 0.0144 0.6552 0.0152 
19 0.6563 0.0150 0.6566 0.0149 0.6563 0.0150 0.6566 0.0149 0.6577 0.0147 0.6580 0.0147 0.6580 0.0149 
20 0.6641 0.0163 0.6641 0.0163 0.6641 0.0163 0.6641 0.0163 0.6655 0.0161 0.6655 0.0160 0.6636 0.0161 
21 0.6863 0.0142 0.6863 0.0142 0.6863 0.0142 0.6863 0.0142 0.6873 0.0141 0.6873 0.0142 0.6730 0.0167 
22 0.7070 0.0106 0.7070 0.0106 0.7070 0.0106 0.7070 0.0106 0.7079 0.0104 0.7079 0.0104 0.7004 0.0128 
23 0.7342 0.0117 0.7342 0.0117 0.7339 0.0117 0.7339 0.0117 0.7342 0.0114 0.7342 0.0112 0.7225 0.0138 
24 0.7623 0.0092 0.7623 0.0092 0.7623 0.0092 0.7623 0.0092 0.7628 0.0089 0.7628 0.0088 0.7482 0.0173 
25 0.7853 0.0076 0.7853 0.0076 0.7855 0.0074 0.7855 0.0074 0.7865 0.0072 0.7865 0.0072 0.7771 0.0121 
26 0.8345 0.0082 0.8345 0.0082 0.8347 0.0077 0.8347 0.0077 0.8352 0.0082 0.8352 0.0082 0.8190 0.0091 
27 0.8769 0.0097 0.8769 0.0097 0.8772 0.0097 0.8772 0.0097 0.8776 0.0097 0.8776 0.0097 0.8687 0.0088 
28 0.9119 0.0082 0.9119 0.0082 0.9119 0.0082 0.9119 0.0082 0.9142 0.0083 0.9142 0.0083 0.9243 0.0094 
29 0.9538 0.0054 0.9538 0.0054 0.9538 0.0054 0.9538 0.0054 0.9550 0.0054 0.9550 0.0059 0.9655 0.0042 
30 0.9878 0.0027 0.9878 0.0027 0.9878 0.0027 0.9878 0.0027 0.9887 0.0027 0.9887 0.0027 0.9977 0.0016 
31 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 
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The l -words with = 3l  provide the best results based on the fraction of correctly 

classified traces in Top 5 (see Figure 16), suggesting that chains of three events provide 

optimal balance between the amount of information in a given l -word and the total 

number of words. As l  gets larger, the amount of data becomes insufficient to get a good 

estimate of the probabilities. 

 

Figure 16. Average fraction of correctly classified traces in Top 5 for various values 

of l ; =E L , 5 0 2(0,10 ,10 ,10 )q −∈ , =c FDT  

Comparison of the average fraction of correctly classified traces in Top 5 for the three 

values of c  shows that FDT  outperforms FD  and F  (see Table 10). However, the 

difference between three values is marginal: for example 57.6% in Top 5 for =c FDT  

vs. 56.2% for =c F . The fact that FDT  outperforms the remaining character types is 

expected, since FDT  contains the largest amount of information. However, the addition 

of information about type of trace point (entry or exit) does not significantly contribute to 

the classification power of the algorithm. Note that even though more time is needed to 
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calculate the FDT -based entropies (since the dictionary of FDT s will be twice as large 

as the dictionary of FD s for small l), the comparison time remains the same (since the 

probabilities of l -words, P , map to a scalar value via the entropy function for all values 

of c ). 

Table 10. Percent of correctly classified traces in Top X  for [ ]( ; , );EH t l c qα , =E L , 

= 3l , and 4 5= {10 ,10 }q − −  

Top X  =c F  =c FD  =c FDT  
Top 1   21.7%   20.9%   21.6%  
Top 2   37.2%   35.3%   36.2%  
Top 3   49.5%   46.7%   47.6%  
Top 4   54.0%   53.5%   54.8%  
Top 5   56.2%   56.6%   57.6%  

Our findings show that the extended entropies outperform the Shannon entropy24 for 

< 1q  and > 1q  (see Figure 17). However, performance of extended entropies with < 1q  

is significantly better than with > 1q , suggesting that rare events are more important than 

frequent events for classification of defects in this dataset. The best results are obtained 

for 4= 10q −  and 5= 10q − . 

It is interesting to note that classification performance is almost identical for H  with 

( , , )E L R T∈ , l =3, 5 4(10 ,10 )q − −∈ , and =c FDT . We believe that this fact can be 

explained as follows: the key contribution to the ordering of similar traces (with similar 

dictionaries) for entropies with 0q →  is affected mainly by a function of probabilities of 

traces' events. This function is independent of E  and q  and depends only on l  and c , 

see Appendix 3.6 for details. 

                                                 
24 We do not explicitly mention entropy values on the figures. However, extended entropy values with 

= 1q  correspond to values of the Shannon entropy. 
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Figure 17. Average fraction of correctly classified traces in Top 5 for various values 

of q ; =E L , (1,3,7)l ∈ ,  = c FDT  

3.4.2 Analysis of the complete set of entropies  

Analysis of the classification power for the complete set of entropies is performed using 

10-fold cross-validation in a similar manner to the process described in Section 3.4.1. 

However, instead of calculating distances for each H  independently, we now calculate 

distances between traces by utilizing values of H  for all parameter sets in Λ  

simultaneously. The validation process is designed as follows 

1. Randomly partition 4266 traces into 10 bins 

a. For each bin 

i. Tag traces in a given bin as a validating set of data and traces in 

the remaining nine bins as a training set;  
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ii. For each trace t  in the validating set calculate the rank of t 's class 

(defect ID) in the training set using the algorithm in Section 3.3.2 

with equation and all25 the 4-tuples of parameters in Λ .  

b. Average information about ranks of the “true” classes and store this data 

for further analysis.  

The results shown in Table 9 show the increase of predictive power: in the case of Top 1 

the results improved from 21.6% (for individual entropies) to 29.7% (for all entropies 

combined); for Top 5 from 57.6% to 61.5%. A significant increase in computational 

effort (the number of entropy fingerprints increases from 1 to 504) does not yield 

dramatic improvement: the 7% increase in power for predicting Top 5 matches comes at 

a 503-fold increase in computational effort. We leave the resulting balance between cost 

and benefit for each individual analyst to make. 

3.5 Summary  
In this work we analyze the applicability of entropies to predictive classification of traces 

related to software defects. Our validating case study shows promising performance of 

extended entropies with emphasis on rare events { }( )5 410 ,10q − −∈ . The events are based 

on triplets (3-words) of “characters” incorporating information about function name, 

depth of function call, and type of probe point ( =c FDT ). 

In the future, we are planning to increase the number of datasets under study, derive 

additional measures of distance (e.g., using tree classification algorithms) and identify an 

optimal set of combinations of parameters. 

                                                 
25 We had to exclude a subset of entropies with =E L , 2= 10q  for all l  and c  from Λ . The values of 

entropies obtained with these parameters are very large ( 100> 10 ), which leads to numeric instability of (6). 
We keep just one of the various named = 1q  entropies to avoid redundancy. 
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3.6 Appendix: Approximation of Equation (3.8)  

We have observed that classification power of the [ ]( ; , );EH t l c qα  is the highest when 

0q → . In order to explain this phenomenon let us expand [ ]( ; , );EH t l c qα  using a  

Taylor series: 
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where 
=1

= log ( )
ni

i e k
k

A p∑ . By plugging (3.11) into (3.8) and assuming that for similar 

traces i jn n n≈ ≈ , (3.8) becomes:  
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Equation (3.12) can be interpreted as follows. In the case when 0q →  and dictionaries of 

a pair of traces are similar, the key contribution to the measure of distance is coming 

from the 
=1

log ( )
ni

e k
k

p∑  term (which depends only on l  and c ) making the rest of the 

variables irrelevant ( q  and n  become parts of scaling factors). This can be highlighted 

by solving a system of equations to identify conditions that generate the same ordering 

for three traces , ,i j kt t t  for all extended entropies (using approximations from (3.12)): 
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 (3.13) 

In information theory log ( )e kp  is the “surprise” in receiving the bit k which occurs with 

probability pk. Thus 
1

log ( )in
k e kk

p p
=∑  is the expected surprise or information (Shannon 

entropy). What about just 
1
log ( )in

e kk
p

=∑ ? It scales with the total number of bits needed 

to specify each symbol.  This is related to the problem of simulating processes in the 

presence of rare events, see [30] for details. 
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Chapter 4  

4 Metrics of Risk Associated with Defects Rediscovery  
Software defects rediscovered by a large number of customers affect various stakeholders 

and may: 1) hint at gaps in a software manufacturer’s Quality Assurance (QA) processes, 

2) lead to an overload of a software manufacturer’s support and maintenance teams, and 

3) consume customers’ resources, leading to a loss of reputation and a decrease in sales. 

Quantifying risks associated with the rediscovery of defects can help all of these 

stakeholders. In this chapter we present a set of metrics needed to quantify the risks. The 

metrics are designed to help: 1) the QA team to assess their processes; 2) the support and 

maintenance teams to allocate their resources; and 3) the customers to assess the risks 

associated with the use of the software product. The paper includes a validation case 

study showing application of these risk metrics to industrial data. To calculate the metrics 

we use mathematical instruments like the heavy-tailed Kappa distribution and the G/M/k 

queuing model. 

4.1 Introduction 
During in-house testing of a software product, the Quality Assurance (QA) team attempts 

to remove defects injected during software development. It is impossible to remove all 

defects before shipping the software product. As customers use the product, they discover 

defects that “escaped” the QA team. Upon defect reporting the software provider’s 

maintenance team prepares and makes available a fix. A discovered defect is sometimes 

rediscovered by another customer. This rediscovery could occur because another 

customer finds the defect before the fix is available or has not been installed.  Defects 

relating to rarely used software features will be rediscovered infrequently. However, 

defects relating to popular and extensively used features may affect a significant 

percentage of customers.  
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Frequently rediscovered defects (affecting many customers) can cause an avalanche of 

requests, defined as a large number of requests for fix patches from multiple customers 

within a short timeframe. Because different software versions are run on different 

software and hardware platforms, each customer may require a different fix patch.  

Avalanches have significant consequences.  Support personnel will experience a heavy 

volume of support requests. The maintenance team will need to prepare a large number of 

special builds, while customers await the official fix. On the other side, the customers’ 

system administrators will need to spend time assessing the fix’s risk and distributing it to 

their systems.  An inordinate number of defects may diminish the provider’s reputation 

and result in decreased software sales.  

Frequent rediscovery of a defect suggests that one or more common functionalities were 

not properly tested. Analysis of such defects is important to identify gaps in QA 

processes to prevent the future escape of similar defects. 

Defect risk analysis is therefore important for software manufacturers and customers. We 

propose a set of quantitative risk metrics which can be used to assist: 

• The support team’s assessment of  the potential number of repeated calls on the 

same subject, helping in personnel allocation; 

• The maintenance team’s estimation of the potential number of repeated special 

builds, assisting in resource allocation of team members; 

• The QA team’s assessment of trends in frequently rediscovered defects on 

release-to-release basis. If the trend shows increased defect rediscovery, QA 

processes must be improved.  The resulting strategy to close testing process gaps 

can be derived by root cause analysis of frequently rediscovered defects; 

• Customers assessment of risks associated with software product usage.  
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We present a validation case study showing applicability of these metrics to an industrial 

dataset of defects rediscovery. In order to model the data we derive a compound Kappa 

distribution and use the G/M/k queueing model. 

Section 4.2 of this chapter reviews relevant work.  Section 4.3 provides formal definitions 

and applications of the metrics. Section 4.4 provides a validation case study, showing 

application of the metrics to the industrial data. Finally, Section 4.5 concludes the 

chapter. 

4.2 Related Research 
The chapter’s main contribution is a set of metrics for assessing defect rediscovery risks. 

The following metrics have been formulated by other authors: the number of 

rediscoveries per defect [1], the time interval between first and last rediscovery of a given 

defect[1] and the probability that a customer will observe failure in a given timeframe 

[2]. Our metrics are complementary to these three.  

Our metrics can help in resource allocation of service and maintenance teams; these 

metrics rely on information about arrival of defect rediscoveries. Other authors have used 

counting processes [3] and regression models to help estimate staffing needs. However, 

the authors do not assess risks associated with under-staffing; hence our work 

complements theirs. 

We use a G/M/k queue analysis to estimate staffing needs for delivery of special builds 

fixing rediscoveries for customers. Queuing theory tools have not yet been applied to this 

problem, although the load on a k-member service team delivering fixes for initial 

rediscovery of defects was modeled in [4] using k M/M/1 processes. Work has also been 

done on modeling the initial discovery repair time distribution [5] and predicting defect 

repair time based on attributes of past defect reports [6]. 

The second contribution of this paper is the introduction of a compound Kappa 

distribution, related to the family of heavy-tailed distributions, to model the data. While 
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previous work has observed that, depending on the dataset, distribution of defect 

rediscoveries is either thin-tailed (exponentially bounded) [7] or heavy-tailed [8],[9], 

many processes in software engineering are governed by heavy-tailed distributions [10]. 

Based on these observations, modeling the rediscovery distribution was performed using 

the empirical [8], geometric [7], lognormal [9], and Pareto [9] distributions. We found 

that none of these parametric models provided an adequate fit to our data. Therefore, we 

introduced a more flexible distribution, namely, the compound Kappa for the number of 

rediscoveries that also allows for tail-event information not available in the empirical 

distribution. 

4.3 Metrics of Risk 
Motivation for metric applications is described in Section 4.3.1 with their formal 

definitions deferred until Section 4.3.2. 

4.3.1 Metrics Application 

Metrics used by Support and Maintenance Teams, Quality Assurance Team and 

customers are given in Sections 4.3.1.1, 4.3.1.2 and 4.3.1.3, respectively. 

4.3.1.1 Support and Maintenance Teams 

Defect discovery related to common and frequently executed functionalities triggers a 

large number of support requests shortly after its initial discovery. This can be explained 

as follows: 

Proactive requests for software fix: The software manufacturer publishes information 

about newly discovered defects on a regular basis. In turn, a customer’s software 

administrators analyze newly published defects shortly after publication and use their 

expertise to assess the defect rediscovery probability and the severity of implications 

associated with its rediscovery. If the administrators decide the risks warrant it, they will 
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contact the manufacturer’s support desk requesting a special software build26 

incorporating a defect fix. This is a preventative measure against encountering this 

problem in the future.  

Reactive requests for software fix: A customer could encounter a defect recently exposed 

by another customer (this is common for “regression” defects which break existing 

functionality) so requesting a special build from the support desk to prevent defect 

reencounter. 

In both cases, the support desk will, after an initial assessment, relay this special build 

compiling and testing request to the manufacturer’s maintenance team. Large numbers of 

customers classifying a defect as “potentially discoverable”, may trigger an avalanche of 

special build requests. These requests can overload the maintenance and support 

personnel. We now analyze the cause of the overload and the actions needed to prevent it. 

Maintenance Team: Customers may use different versions of the product on multiple 

platforms. Even though the source code repairing a given defect is the same, special 

builds will have to be tailored individually for each customer. Building and testing a 

special build of a large software product can take several days, consuming human and 

hardware resources. Therefore, the maintenance team is interested in knowing the 

probability of the increase in the number of requests for special builds above a certain 

threshold27 in a certain timeframe as well as the total number of the requests above the 

threshold. We call the number of requests for special builds above a certain threshold a 

“spike”. In addition to the probability of a spike, the maintenance team is also interested 

in the conditional expectation of the spike’s size given its occurrence. Also of interest is 

the probability that the number of requests for special builds in a given timeframe will 

not exceed a predetermined threshold. By leveraging this data, the management of the 

                                                 
26 We assume that the  standard vehicle for delivery of fixes is through cumulative fix packs. 
27 In addition to routine requests for special builds for defects with small numbers of rediscoveries. 
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maintenance team can allocate personnel (based on the expected number of special builds 

and the average waiting time to deliver the builds) so that they can be transferred to the 

“special build team” on an as-needed basis, decreasing delivery time to customer.  

Support Team: Once contacted by a customer with a proactive request for a special 

build (fixing defect of interest), a support analyst must verify if the defect can be 

rediscovered by the customer28. If the request is reactive, then the analyst has to verify 

that the problem is caused by this particular defect and not another one with similar 

symptoms. Knowing the probability and potential size of spikes in the number of requests 

(as well as the probability of not exceeding a certain number of calls in a given 

timeframe) can support management’s personnel allocation, speeding diagnostics thus 

leading to faster transfers to the maintenance team and a decrease in the overall 

turnaround time. The end result is cost savings and higher customer satisfaction. 

4.3.1.2 Quality Assurance Team 

Maintenance and Support teams can use information about frequently rediscovered 

defects for tactical planning. The QA team can use this data for strategic planning to 

identify trends in software quality on a release-to-release basis. Frequently rediscovered 

defects affecting a significant percentage of the customer base relates to frequently 

executed common functionality. The presence of such defects suggests the QA team’s 

inability to reproduce customer workloads in-house or its failure to execute existing test-

cases covering this functionality [11]. In order to compare releases of the product, an 

analyst needs to find out how many defects were rediscovered at least x times for a given 

release29. The numbers of defects with high number of rediscoveries should decrease 

                                                 
28 For example, even though the customer is using functionality affected by a given defect, the problem 
could be specific to a hardware platform not used by this customer. 
29 If the customer base of a software product does not change significantly from release to release, then the 
number of defects with a high number of rediscoveries can be directly compared. If this assumption fails 
then it may be beneficial to normalize the number of defects by the size of customer base and/or product 
usage. 
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from release to release.  An increasing number of defects may imply a deterioration of 

QA processes. The QA team should analyze root causes of defects to find the actions 

needed to close these gaps.  

4.3.1.3 Customers 

Information about defect rediscovery interests customers, especially for mission-critical 

applications. It is known that a customer’s perceived quality [12],[13],[11] is correlated 

with the quantity and severity of failures that the customer encounter. Therefore, 

comparison of the number of defects affecting a significant percentage of the customer 

base for various products can be used as one of the measures needed to select the “safest” 

product. In the next section we discuss some techniques required to answer these 

questions.  

4.3.2 Formulation of Metrics 

Based on the discussion in the previous section, stakeholders are interested in the 

following data: 

1. The number of defects rediscovered more than certain number of times in a given 

timeframe; 

2. The number of defects affecting a certain percentage of the customer base in a 

given timeframe; 

3. The total number of rediscoveries for defects rediscovered more than certain 

number of times  in a given timeframe; 

4. The probability of spikes in the number of requests in a given timeframe; 

5. The probability that the number of requests for special builds in a given 

timeframe will not exceed a certain threshold; 

6. The worst-case scenario for the total number of rediscoveries; 
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7. The expected waiting time of customers. 

To calculate these variables we build a formal probabilistic model of defect rediscoveries. 

Suppose that N field defects are discovered independently up to time t with the i-th defect 

rediscovered ( , )i iD D s t≡ times in the interval [s, t), s<t. For the sake of brevity we will 

use iD  and ( , )iD s t  interchangeably. The number of rediscoveries R(s,t) between times s 

and t is given by 

 
( )

1

( , ) ( , ).
N t

i
i

R s t D s t
=

≡ ∑  (4.1) 

Formally, a spike is defined as the situation when the total number of rediscoveries in a 

given timeframe [s,t] is greater than r: 

 ( , ) .R s t r>  (4.2) 

The probability that the i-th defect will be rediscovered exactly d times in the interval 

[ , )s t  is given by ( ) ( ).i ip d P D d≡ = We assume that the probability distribution of the 

number of rediscoveries is the same for all defects (i.e., that the iD  are identically 

distributed random variables). 

Assuming that the number of rediscoveries lies in the range [0,∞), the probability that the 

number of rediscoveries of the i-th defect will be less than or equal to d is given by 

cumulative distribution function (cdf) 
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where AI is an indicator variable such that 
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1,  if  holds

;
0,  otherwiseA

A
I ⎧

= ⎨
⎩

 (4.4) 

and the expected value of A is equal to probability of A: 

 [ ] ( ).AE I P A=  (4.5) 

The probability that the number of rediscoveries of the i-th defect will be greater than d is 

given by the decumulative distribution function: 
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The quantile function, (inverse of the cdf) 1 ( )iF α−  is used to determine the α quantile of a 

given distribution. 

The expected total number of rediscoveries for the i-th defect with rediscoveries ranging 

between l and u is given by 

 ( , ) ( ).
i

u

i i l D u i
j l

R l u E D I jp j≤ ≤
=

⎡ ⎤= =⎣ ⎦ ∑  (4.7) 

Note that Ri(1,∞) calculates expected number of rediscoveries of the i-th defect. Armed 

with these instruments, we can estimate the metrics listed above. 

M1: Expected number of defects rediscovered more than certain number of times 

The expected number of defects rediscovered more than d times is given by  

 1
1 1 1

( ) ( ).
i i

N N N

D d D d i
i i i

M d E I E I F d
= = =

> >
⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∑ ∑ �  (4.8) 

If all pi are identically distributed, then (4.8) simplifies to 
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i.d.

1 1
1
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M d F d NF d NF d
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= = =∑ � � �  (4.9) 

Note that we suppress indices to ease notation. 

M2: Expected number of defects affecting certain percentage of the customer base 

This metric is similar to M1. If we denote the total number of customers by C and assume 

that every customer rediscovers a given defect only once, then the relation between the 

percentage of the customer base x and number of rediscoveries d is given by 

 /100 ,d xC≈ ⎢ ⎥⎣ ⎦�  (4.10) 

where ⎢ ⎥⎣ ⎦i  is the floor function mapping to the next smallest integer. M2 is calculated as 
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M3: Expected total number of rediscoveries for defects with number of rediscoveries 

above certain threshold in a given timeframe 

The expected total number of rediscoveries for a given spike is calculated as 
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 (4.12) 

where d is the smallest number of rediscoveries of a particular defect. 

M4: Probability of spikes in the number of requests in a given timeframe 

This can be rephrased as probability that the total number of rediscoveries will exceed a 

certain threshold L. The calculation of this value involves two steps: 
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1) Find d  to satisfy the equation: 
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Since d is discrete, we will not always be able to find an integer value of d to 

satisfy this equality, so we look for the smallest integer d which satisfies: 
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2) After identifying d, the probability that the total number of rediscoveries will 
exceed L is given by  

 4 ( ) ( ) 1 ( ).M d F d F d= = −�  (4.15) 

M5: Probability that the total number of rediscoveries will not exceed certain 

threshold 

This metric is complementary to M4 and is calculated in a similar manner. Given the 

number of rediscoveries d from (4.14) we calculate M5 as 

 5 4( ) 1 ( ) ( ).M d M d F d= − =  (4.16) 

M6: Estimate of the worst case scenario for the total number of rediscoveries  

This metric provides a threshold which the total number of rediscoveries will not exceed 

for a given probability level. The metric provides the worst case scenario of the total 

number of rediscoveries. For example, if the value of M6(0.99) is equal to y, then it will 

tell us that in 99 cases out of 100 the total number of rediscoveries will not exceed y30.   

                                                 
30 This is similar to “Value At Risk” measure used in finance 
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In order to obtain this value we need to identify number of rediscoveries for a given 

probability level α using 1( )iF α−⎢ ⎥⎣ ⎦ . The threshold value of rediscoveries is then 

calculated using 
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M7: Expected waiting time of customers being serviced 

This metric is calculated using queuing tools [14]. M7 depends on the distributions 

governing service time, requests’ inter-arrival time and number of personnel allocated to 

handle these requests. The metric’s formula will depend on the form of distributions 

governing the queue. 

Let us look at the application of the metrics. Metrics M1 and M2 can be used by QA and 

customers to calculate the number of defects injected in common functionality (M1) and 

identify defects affecting a certain fraction of the customer base (M2) as discussed in 

Sections 4.3.1.2 and 4.3.1.3. 

Metric M3 helps to estimate the total number of rediscoveries for frequently discovered 

defects and the potential contribution of the frequently rediscovered defects to the overall 

load of support and maintenance teams. 

Metrics M4-7 can be used to address issues described in Section 4.3.1.1 and help in 

resource allocation of the service and maintenance teams.  

Metrics M4-6 may also be used for resource allocation as follows: A manager responsible 

for resource allocation knows the amount of available personnel, denoted by A, and, 
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based on historical data, the average amount of service (special build) requests that 

support (maintenance) person can process per unit time, denoted by μ. 

A simple estimate31 of the overall amount of service (special build) requests, denoted by 

Q, that can be processed by personnel in a given timeframe T is given by 

 .Q A Tμ=  (4.18) 

The manager can then use M4(Q) or M5(Q)  to get an estimate of the probability that the 

support of maintenance team will be able to handle the volume of requests Q. 

The manager can examine the resource allocation task from the opposite perspective: 

instead of calculating the probability of handling requests by employees, she  can 

calculate the number of service or special build requests that will not exceed M6(α) at 

confidence level α. We can obtain the amount of personnel A needed to handle this 

workload by inverting (4.18): 

 6 ( / ( ).A M Tα μ= )  (4.19) 

Note that stationary processes should be used if metrics M4-7 are used for forecast-related 

management decisions. In order to calculate the metrics M1-6 we also need an estimate of 

the total number of defects. There exists a variety of methods that can be used to estimate 

this value, see [15] for review of the methods. Detailed discussion of these techniques is 

beyond the scope of this paper. 

4.4 Case Study 
In this case study we use defect discovery data for a set of components of four 

consecutive releases of a large scale enterprise software. To preserve data confidentiality, 

                                                 
31 This estimate does not account for request inter-arrival times. A better estimate can be obtained using 
metric M7 
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the dataset is scaled and rounded. Also, we assume that the customer base size remains 

constant across all four releases. 

Figure 18 depicts N(t), the cumulative number of defects encountered up to t years after 

the product has shipped. The total number of rediscoveries from time 0 (general 

availability (GA) date of the product to be shipped to the field) to time t, R(0,t), is shown 

in Figure 19. The age of the releases in the field varies from 5 years for v.1 to 2 years for 

v.4 because v.4 was released about three years after v.1  
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Figure 18. N(t): total number of defects discovered up to time t. 
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Figure 19. R(0,t): total number of rediscoveries up to time t. 

Metrics M1-6 rely on the distribution of the number of rediscoveries per defect Di (Section 

4.3.2). In the same section, to simplify formulas for M1-6, we assumed that Di are 

identically distributed so must specify the distribution of Di. Without loss of generality, 

we split the Di data for every release into yearly time intervals ( , 1)iD t t + , where t = 0 … 4 

(if the data is present for a given release).  

This split is reasonable in practice. Resource planning (metrics M3-6) is performed for a 

fairly short future time interval; one year or less being common planning horizons. 

Metrics M1-2 focus on measuring general quality of the product and would benefit from 

the information about rediscoveries over the complete lifecycle of a product in the field. 

However, it is also critical to identify issues with QA processes early, so that actions can 

be taken to improve QA processes of releases under development. Since the lifespan of 

an enterprise software product can often reach a decade or more, it would not be practical 

to wait such a long time to obtain information.  
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4.4.1 Finding a Suitable Distribution 

In order to find an analytic distribution that would be able to fit each of the yearly 

datasets, we use an L-moments ratio diagram [16].  This diagram is a goodness-of-fit tool 

to determine the probability distribution of the data. The L-moments are chosen since 

they are less biased and are less sensitive to outliers than ordinary moments [17],[16]. 

The diagram is shown in Figure 20 and the hollow circles denote each of the yearly 

datasets of Di. The diagram shows the fits of the following widely used distributions [18]: 

Exponential (EXP), Normal (NOR), Gamma (GUM), Rayleigh (RAY), Uniform (UNI), 

Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Normal 

(GNO), Generalized Pareto (GPA), generalization of the Power Law, Pearson Type III 

(PE3), and Kappa (KAP). The diagram shows that the data is best approximated by a 

Kappa distribution as all data lie in the Kappa applicability space32, with the Pearson 

Type III distribution the second best choice (data points lie around PE3 L-moments ratio 

line). 

The analysis procedure is adequately shown even if we limit the scope of the analysis to 

the four datasets of (1, 2)iD  showing rediscovery data for the second year of each release. 

We note that due to heavy tails, the exponential distribution does not provide an adequate 

fit to the data. Based on the data from the L-moments ratio diagram, we fit the data using 

the two best performers: Pearson Type III and Kappa distributions. The QQ-plots 

showing goodness of fit are shown, accordingly, in Figure 21 and Figure 22. Based on 

Akaike’s information criterion (AIC) [19] the Kappa distribution provides a better fit33 

than Pearson Type III for three datasets out of four (see Table 11). 

 

                                                 
32 The Kappa distribution’s applicability space is a plane bounded by GLO and “Theoretical limit” L-
moments ratio lines [16] on Figure 20. 
33 The lower the value of AIC – the better the fit. 
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Table 11. AIC  
Distribution v.1 v.2 v.3 v.4 

PE3 12397 4481 2069 4797 
KAP 11277 4309 2390 4304 
Compound KAP 9392 4283 2934 4238 
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Figure 20. L-moments ratio diagram of Di  for all releases per year (years 1 – 5). The 

hollow circles denote each of the yearly datasets of Di. The diagram shows the fits of 

the following distributions: Exponential (EXP), Normal (NOR), Gamma (GUM), 

Rayleigh (RAY), Uniform (UNI), Generalized Extreme Value (GEV), Generalized 

Logistic (GLO), Generalized Normal (GNO), Generalized Pareto (GPA), 

generalization of the Power Law, Pearson Type III (PE3), and Kappa (KAP). Kappa 

distribution applicability space is a plane bounded by GLO distribution line above 

and the “Theoretical limits” line below and is not shown on the legend. Based on 

this figure, Kappa distirbution is the only one that is applicable to modeling each of 

the datasets. 
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Figure 21. QQ plot of the empirical vs. PE3 distributions’ quantiles. 
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Figure 22. QQ plot of the empirical vs. KAP distributions’ quantiles. 
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However, Figure 22 suggests that even the Kappa distribution isn’t sufficiently flexible to 

fit both left and right tails of the empirical distribution. In order to overcome this obstacle 

we resort to a compound Kappa distribution. 

The Kappa distribution [16] is a flexible 4-parameter distribution suited for fitting heavy-

tail data. This distribution contains the Exponential, Weibull, Generalized Extreme 

Value, and Generalize Pareto distributions as special cases.  Its cdf  is: 

 
1/(( ) 1 1 .

h
xF x h

κκ ξ
α

1/
⎧ ⎫− )⎪ ⎪⎡ ⎤= − −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

 (4.20) 

The parameters ξ , α, and κ and h describe location, scale, and shape, respectively. The 

associate quantile function is: 
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 (4.21) 

The first Kappa distribution with cdf Fa, fits the left tail of the dataset (in the range [0, ρ]) 

and the second with cdf Fb fits the right tail in the range (ρ, ∞).  We select these partition 

points, ρ, for each of the four datasets by minimizing the sum of squares of the residuals 

between fitted and empirical data. For other techniques see [19]. Table 12 presents values 

of ρ. Fa and Fb  are fitted independently; the resulting cumulative distribution function 

looks like: 
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where w, w1, w2 are the  normalization constants  
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where ecdf is the empirical distribution function. We use the Weibull form [20] of the 

empirical distribution function: given a vector of observations y sorted in ascending 

order, with sample size n, the unbiased non-exceedance probability of the i-th observation 

is given by: 

 ecdf ( ) / ( 1).i i n= +  (4.24) 

The quantile function of the compound distribution can be obtained by inverting (4.22): 
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where  
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The parameters’ lower index, ω, specifies their affiliation with the first (a) or second (b) 

Kappa distributions; aω =  if 1 (au ww F ρ≤ )  and bω = otherwise.  

Table 12. Values of variables 
Variable v.1 v.2 v.3 v.4 

ρ 15 15 8 10 
M1(10) 65.52 26.27 6.02 20.64 
R(1,2)/N(2) 2.24 1.76 1.02 1.53 

The goodness of fit of the compound distribution is shown on QQ-plot in Figure 23. The 

QQ-plot suggests that the compound distribution provides a good fit to the underlying 

data. In addition, based on the AIC data given in Table 11, the compound Kappa 

distribution provides better fit than the Kappa distribution for three datasets out of four.  
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Unfortunately, we cannot use the Kolmogorov-Smirnov or chi-squared tests due to the 

large number of tied observations, as Figure 24 shows. 
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Figure 23. QQ plot of the empirical vs. Compound distributions’ quantiles. 

All of the distributions above are fitted to the data using the method of L-moments [16]. 

We have chosen this technique over the classical method of moments due to a more 

accurate estimate of the distribution’s right tail [16],[17]. Having established the 

machinery for estimation of the metrics, we proceed to examples of the analysis and 

usage of the metrics themselves. 
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Figure 24. Plot of the empirical cdf vs. Compound Kappa distribution theoretic cdf. 

4.4.2 Application of the Metrics 

The application section is divided into two parts. Section 4.4.2.1 focuses on software 

quality metrics, while Section 4.4.2.2 concentrates on resource allocation-related metrics. 

4.4.2.1 Analysis of Software Quality 

As discussed in Sections 4.3.1. and 4.3.2, metrics M1, defined by equation (4.9), and M2, 

equation (4.11), can be used to identify potential issues with QA processes and to help 

customers find the “safest” product. Figure 25 plots M1 against the number of 

rediscoveries d. The plot shows that from v.1 to v.3 the number of defects rediscovered 

more than d times decreased for all values of d. However, the value of the metric went up 

for v.4: 
.1 .2 .3 .4

1 1 1 1 .v v v vM M M M< < <  
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Figure 25. M1: expected number of defects rediscovered more than d times during 

the 2nd year after GA date. 

This ordering becomes especially obvious if we look at values of M1 for a specific 

number of rediscoveries (for example, d=1034) for all releases (shown in Table 12).  

This information suggests that the quality _  of QA processes went down in the last 

release: 

 ( .1) ( .2) ( .4) ( .3).v v v v< < <_ _ _ _  (4.26) 

Before making this conclusion we should look at other quality attributes of the software. 

The number of rediscoveries per defect: R(1,2) / N(2), given in Table 12; the ordering of 

                                                 
34 We pick this number arbitrarily; an analyst can pick this threshold value based on their expertise on 
problematic levels of rediscoveries in their organization. 
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the total number of defects (Figure 18), and their rediscoveries (Figure 19) in the second 

year concur our hypothesis (4.26).  

Based on this conclusion, an analyst needs to identify gaps in QA processes by analyzing 

reasons for the defects’ injection and the defects’ escape to the field. Upon identifying the 

gaps, actions should be derived and taken to prevent injection and escape of defects in 

future releases of the software. Additional data can be extracted by focusing the analysis 

on subsets of data grouped by testing team, functionality, etc. 

Since we assume that the number of customers remains constant for all four releases Eq. 

(4.10) implies metric M2 is a scaled version of M1. Therefore, the number of defects 

affecting a certain fraction of the customer base is larger for v.4 than for v.3. At this stage 

a customer should perform risk-benefit analysis: would the value of v.4’s new features 

outweigh the increased risk of encountering defects35. The customer can perform 

additional analysis by looking at M2 for a specific subset of defects that may critically 

affect operations, e.g., defects in critical functionality leading to a software crash, while 

omitting defects that are related to functionality not used by this particular customer. 

4.4.2.2 Resource Allocation 

Application of metrics M3-7 for resource allocation is discussed in Sections 4.3.1.1 and 

4.3.2. 

A few examples of the value of these metrics are as follows. Suppose that the 

maintenance team manager needs to analyze recourse allocation for building rediscovery-

related special builds for v.4 during the third year of service. Currently, the manager has 

8 people allocated to this task so k=8. Given an available fix, the manager knows that the 

average time for a team member to create, test, and ship a special build is two days: a 

                                                 
35 The complete analysis should include additional factors, such as software cost and support lifespan 
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person can handle on average 250 / 2 125μ = = requests per year36. Based on historical 

data, we know that the process governing the arrival of rediscoveries during the third year 

is the same as during the second year. Therefore, we can use the data from the second 

year to get resource allocation estimates for the third year. 
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Figure 26. M3: expected total number of rediscoveries for defects with number of 

rediscoveries above d during the 2nd year after GA date. 

To put the importance of this team into perspective, the manager needs to know the 

fraction of rediscovery-related special builds compared to the total number of requests for 

special builds. The total expected number of rediscoveries is given by M3(1) (Eq. (4.12)) 

and shown in Figure 26. For simplicity, we use the number of defects discovered during 

the second year as an estimate of the number of discoveries during the third year. In this 

case (based on Figure 18) the expected number of discovered defects during the third 

                                                 
36 Assuming 250 working days per year. 
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year is approximately equal to N(2) – N(1) = 417. M3(1) for v.4 is equal to 1299. The 

fraction of the total number of request for special builds related to rediscovered defects is 

1299 / (1299 + 417) ≈ 0.76. This team will handle a significant portion of the overall 

number of requests and, therefore, allocation of the personnel for this team can be 

critical. 

Equation (4.18) can be used to get the average number of requests that the team can 

handle per year: 

 8 125 1 1000.Q kμ= Τ = × × =  (4.27) 
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Figure 27. M5: probability that the total number of rediscoveries will not exceed L 

during the 2nd year after GA date. 

Metric M5(Q) (Eq. (4.16))  is the probability that the number of requests will not exceed 

Q. Based on Figure 27, M5(Q)= M5(1000) ≈ 0.984. This value can be interpreted as 

follows: in the hypothetical case of the software being in service for 1000 years (and the 

arrival of rediscoveries being stationary) in 984 years out of 1000 a team of 8 people 
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would be able to handle the requests, in 16 years out of 1000 the number of requests 

would be larger than this team can handle. 

What if the manager would like to know how many people is needed to handle requests 

in 999 years out of 1000? By using Equation (4.19) and Figure 28, the number of people 

needed to handle these requests is equal to: 

 6 6( (0.999) 1245 10.
125 1 125

M Mk
T
α

μ
)

= = ≈ ≈
×

 (4.28) 

This suggests that the manager should allocate two additional team members to handle 

this extreme case. 
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Figure 28. Estimate that the total number of rediscoveries will not exceed M6 with 

confidence level α. 

So far we did not consider the amount of time customers must wait to get their special 

build. If, at a certain time, the maintenance team receives an avalanche of requests, the 
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customers will have to wait for a long time to obtain their special builds. In order to 

obtain the expected waiting time, W, we need to model this queue [15] to consider 1) the 

distribution of request inter-arrival times. [14]; and 2) the time to complete service. We 

assume that the process is stationary, the queue is “First in, First out”, and the service 

times are exponentially distributed with mean service time equal to 1/ 0.008μ =1/125 =  

years. The empirical average number of requests for special builds of v.4 during the 

second year is λ = 982 requests per year.  The distribution of inter-arrival times for v.4 

(second year) is given in Figure 29. We could not find an analytic distribution providing 

good fit to the data. Due to this fact, we pick a queuing model denoted, using Kendall’s 

notation [14], as G/M/k: 

• G: general distribution of inter-arrival requests. In our case we will use the 
empirical distribution in Figure 29, 

• M: exponential distribution of service times, 
• k: number of team members handling the requests. 

Details of the model are given in [14].  
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Figure 29. Density of requests inter-arrival times for v.4, second year. 
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Complementary to W, we calculate the percentage of the overall working time the team 

members spend generating special builds: 

 / ( ) 100.b kλ μ= ×  (4.29) 

For example, average busy time for 8 team members is  

982 / (8 125) 100 98.2%.b = × × ≈  

Model results are given in Table 13 showing that 8 team members can handle service 

requests. However, average waiting time will be 26.3 working days, which may be 

unacceptably long. Increasing the team to 10 decreases W to 2.9 days and a 12 member 

team further reduces W to 2.2 days. However the associated busy time of team members 

drops from 98.2% for 8 team members to 65.5% for 12 team members.  

Table 13. Results of the G/M/k model for v.4, second year. 
Average waiting time W Number of 

team 
members k in years in working 

days 

Percent of the 
time the team 
members are 

busy (b) 
8 0.1052 26.3 98.2% 
9 0.0170 4.3 87.3% 
10 0.0115 2.9 78.6% 
11 0.0097 2.4 71.4% 
12 0.0089 2.2 65.5% 

With this information, the manager can now select the optimal team size and plan 

additional tasks for the team members to fill their free time. The analysis of support 

personnel allocation is performed in a similar manner. 

4.4.3 Threats to Validity 

The underreporting of problems by customers can skew the dataset making the right tail 

of the Di distribution heavier. Two main types of defects are not reported to the service 

desk: 1) defects with low severity with obvious workarounds and 2) non-reproducible 

defects that the customers encounter during coincidences of multiple events which 

disappear after restarting the software. 
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Underreporting may bias the analysis of actual software quality (Section 4.4.2.1). 

However, bias will be consistent across releases as long as underreporting is. 

Underreporting will not affect resource allocation processes (Section 4.4.2.2), since 

service and maintenance teams are interested in prediction of the actual number of 

support or special build requests. For them, a bug that is not reported does not exist. 

4.5 Conclusions 
Defect rediscovery is an important problem affecting both software manufacturers and 

customers. We have introduced a set of practical metrics designed to assess risks 

associated with defect rediscovery. The metrics can help the QA team with performance 

analysis of QA processes. They aid support and maintenance teams with resource 

allocation and with estimation of risk associated with under-staffing. Finally, the metrics 

provide customers with information on quality of various software products to help 

identify products best suited for their needs. The metrics can be applied to any defect 

rediscovery dataset and are distribution-independent. We believe that these metrics are 

applicable to other software products. We also presented a validation case study showing 

application of the metrics to industrial data.  
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Chapter 5  

5 Selection of Customers for Operational and Usage 
Profiling  

Operational and usage profiles collected from customers provide developers and testers 

with valuable quantitative information on usage patterns of software being developed. 

Unfortunately, gathering such profiles from a large set of customers can be challenging 

due to time and resource constraints. In this chapter we propose to use information about 

defects that customers found to narrow down a list of candidate customers to profile. We 

present a technique for selection and prioritization of a minimal set of customers for 

operational and usage profiling to cover a certain set of defects. The technique optimally 

selects a minimal set of customers for profiling and, once the set is identified, prioritizes 

the customers within the minimal set. We describe a validation case study confirming that 

this approach is scalable for a large customer base. Analysis results can then be used to 

close gaps in testing coverage and to improve the maintenance process. 

5.1 Introduction 
The number of execution paths grows combinatorially with software size [6]. Therefore, 

it is almost impossible to cover all execution paths because of development complexity, 

time and resource constraints. Analysis of field defects allows us to identify major testing 

gaps and close them, thereby improving the testing quality of future releases. If a 

customer reports a lot of defects, we can deduce that customers’ usage patterns cover a 

lot of execution paths that had not been covered in-house. We can profile these customers 

(gather data, workloads, etc.) and incorporate this information in testing scenarios. 

If software is used by a large number of customers, we cannot possibly profile all of 

them. Moreover, some of the customers might not provide us access to their system or 
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data for confidentiality, statutory, or contractual reasons37. Fortunately, information 

about defects that each customer discovers provides us with a list of problematic areas 

covered by each particular customer. Analysis of this data can help us to narrow down a 

list of “interesting” customers that we need to profile.  

This chapter proposes a technique that 1) optimally selects a minimal set of customers for 

profiling and 2) once the set is identified, prioritizes the customers within the minimal 

set. Results from a case study we conducted (described in this paper) show that this 

approach is scalable for use in large-scale software development environments. 

This approach helps to  

• reduce defect escapes to the field38, 

• close gaps in test coverage, and 

• prioritize test coverage. 

Let us look at each of the benefits in detail. 

Reduce defect escapes to the field:  The goal is to reduce and or eliminate software 

defects that escape to the field. This has a direct impact on improving the quality and 

reducing the maintenance cost of software in the field.  Improving either or both of these 

will increase customer satisfaction and reduce maintenance and development cost over 

the lifetime of the product.  This work discusses a method to identify defects that need to 

be addressed in order to close the gaps in coverage, both in the test and development 

process in order to reduce defect escapes to the field. We also provide a method to 

                                                 
37 For example, a database may contain sensitive information such as confidential financial or research 
data. 
38 Field defects are defects found by customers during post-release phase. 
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identify customers for operational profiling39 [7] to assist in gap analysis. Within these 

two methods we will discuss how to prioritize and analyze the field defects.  

Close gaps in test coverage: Field defects are a result of missed coverage from all 

development processes. These can include escapes from design, code, test and 

documentation reviews.  The test escapes can occur in Unit, Function, System, 

Integration, Regression, Alpha and Beta testing.  The goal is to close these coverage gaps 

by adding test coverage and/or process changes. The pervasiveness of a field defect will 

be used to identify defects that are hit by many customers and also to identify a set of 

customers that have a high number of defects that are pervasive or have been hit by many 

other customers. The latter will be used to identify customers who would be candidates 

for operational profiling. 

Operational profile test selection puts more emphasis on likely execution paths [7]. This 

may lead to exclusion of critical but infrequently executed paths (e.g., disaster recovery 

functionality). Coverage gaps identified during analysis of field defects provide us with 

objective picture of gaps’ “importance”. The larger the number of discoveries of a 

particular defect, the more important is the execution path associated with the defect. 

Prioritize test coverage: One of the problems in software testing is determining what has 

to be tested and the prioritization of this testing through various test processes [2]. Once 

usage and profiling information is gathered from customers, these data should be 

incorporated into in-house test cases and scenarios to improve overall code coverage. 

Workloads that are associated with a large number of frequently discovered defects 

should be given higher priority than those that are associated with a small number of 

infrequently discovered defects. 

                                                 
39 An operational profile is a set of operations that a software system performs along with associated 
probabilities of use. 
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The chapter is structured as follows: Section 5.2 reviews relevant work; Section 5.3 

explains dimensions used for qualitative customer profiling; Section 5.4 details 

quantitative customer selection technique; Section 5.5 describes a case study validating 

our approach. Finally, Section 5.6 provides conclusions and future work.  

5.2 Related Work 
Operational profile development involves the following steps [7]: 

1. Customer profile, 

2. User profile, 

3. System-mode profile, 

4. Functional profile, 

5. Operational profile, 

6. Test selection. 

Researchers focus on various aspects of operational profiling development: e.g., data 

gathering [4], extension of data captured during profiling [3], test selection [10], and 

reliability estimation [9]. However, to the best of our knowledge, no work has been done 

in the area of selection of customers for profiling. We describe our approach for 

prioritization of customers in the next section. 

5.3 Qualitative Analysis Of Customers 
Let us analyze customers qualitatively. We prioritize customers for profiling using two 

dimensions:  

1. Total number of defects found by a given customer, 

2. Average number of discoveries per defect found by a given customer. 
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Prioritization criteria are described in Table 14.  

We will go over the criteria for each of the four permutations (quadrants) in detail 

• LL: The customer finds a small number of defects that are rarely discovered by 

others. Incorporation of this customer’s usage allows us to close a small number 

of gaps in testing of infrequently executed paths. 

• HL: The customer finds a large number of defects that are rarely discovered by 

others. This customer can be considered “unique”. Incorporation of a customer’s 

usage allows us to close a large number of gaps in testing of infrequently executed 

paths. 

• LH: The customer finds a small number of defects that are often discovered by 

others. These defects are clearly development, test process, and test coverage 

misses. The defects need to be addressed as they are interesting from a test 

process perspective. However, incorporation of this customer’s usage allows us to 

close only a small number of gaps in testing of commonly executed paths. 

• HH: The customer finds a lot of defects that are also found by other customers. 

Incorporation of this customer’s usage allows us to close a large number of gaps 

in testing of commonly executed paths. 

Note that we cluster the data in the four quadrants without specifying explicit thresholds 

for “low” and “high” values. The actual values of the thresholds will depend on the 

underlying data, such as total number of customers and defects. This approach gives a 

high level “taste” of the product’s quality. 

Suppose we have identified two customers who discovered a large number of defects that 

are also frequently discovered by other customers. We now need to make sure that the 

lists of defects discovered by these two customers do not overlap significantly: otherwise, 

we will be duplicating our effort. 
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Table 14. Customer prioritization criteria 
Average number of discoveries per defect found by a given customer Total number of defects found 

by a given customer Low High 

Low LL: Not interesting from 
profiling perspective 

LH: Not interesting from 
profiling perspective 

High HL: Potential candidate for 
profiling  

HH: Ideal candidate for profiling 

Manual selection of customers using a prioritization schema described above can become 

cumbersome if a product is used by thousands of customers discovering hundreds of 

defects. Therefore, conversion of this qualitative technique to quantitative domain is 

difficult. We need to find a quantitative technique that will allow us to minimize the 

number of customers for profiling while maximizing the total number of discovered 

defects. Once a minimal set of customers are identified, we can prioritize them by the 

total number of covered defects. Details of this approach are given in the next section. 

5.4 CUSTOMER SELECTION TECHNIQUE 
Manual selection of customers using the prioritization schema described above can 

become cumbersome if a product is used by thousands of customers discovering 

hundreds of defects. We need to find quantitative techniques that will allow us to:  

1. Minimize the number of customers for profiling while maximizing the total 

number of discovered defects; 

2. Prioritize a minimal set of customers (once identified) by the total number of 

discovered defects per customer.  

We describe a minimization technique in Section 5.4.1 and a prioritization technique in 

Section 5.4.2. 

5.4.1 Minimization of Customer Set 

In order to minimize a set of customers we propose to formulate this task as a Binary 

Integer Programming (BIP) problem [8]. We want to identify a minimal set of customers 

that discovered all defects.  
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Formally, we need to  
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 (5.1) 

where  

• N ≡ total number of customers; 

• M ≡ total number of defects; 

• ci ≡ i-th customer (i = 1 … N), ci = 1 if the i-th customer is included in the 

minimal set of customers to profile and is 0 otherwise; 

• wi ≡ i-th customer weight; 

• dj ≡ j-th defect (j=1…M); 

• pi,j ≡ binary variable showing discovery of the j-th defect by the i-th customer, 

pi,j=1 if the i-th customer discovered the j-th defect and is 0 otherwise. 

If we want to emphasize “importance” of the i-th customer, then we should increase 

weight wi relative to the weight of the remaining customers. For example, wi can be 

proportional to the difficulty of gathering information from the i-th customer and 

inversely proportional to the average number of discoveries per defect found by the i-th 

customer. If all customers are considered equal then wi=1 for all i. 

In short form (5.1) can be written as 
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This approach should provide us with the optimal solution [8]. In general, solution of BIP 

problems is NP-hard. However, if a constraint matrix p is totally unimodular40 and the 

right hand side of constraints consists of integer values, then the problems can be solved 

efficiently [8]. Our problem formulation falls into this category of BIP problems. 

5.4.1.1 Example of Selection of the Minimal Set of Customers for 
Profiling 

Suppose we have four customers (c1, c2, c3, and c4). The customers discovered five 

defects (d1, d2, d3, d4, and d5) in total. Their discoveries are summarized in Table 15. 

We assume that all the customers are of equal importance and w=1. Equation (5.1) 

becomes 
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 (5.3) 

The solution to this problem is c1=0, c2=1, c3=1, and c4=1; i.e., the minimal set of 

customers for profiling that cover all defects is {c2, c3, c4}. 

Once a minimal set of customers for profiling is selected, we need to prioritize this 

minimal set. 

 

                                                 
40 A totally unimodular matrix is a matrix for which every square non-singular submatrix is unimodular 
(i.e., with determinant +1 or -1). 
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Table 15: Example. Defects’ discovery 
Customers Defects c1 c2 c3 c4 

d1  ×   
d2 × × ×  
d3 ×  ×  
d4   × × 
d5    × 

 

5.4.2 Prioritization of Customers within the Minimal Set 

In order to prioritize customers within the set of customers for profiling we propose to 

use the following greedy heuristics41. The customer prioritization heuristic greedily 

selects the customer with the largest number of non-covered defects. Once the customer 

is selected, the customer’s defects are marked as covered. The process repeats itself until 

all the defects are covered at least once. We avoid applying this heuristic to the initial set 

of customers directly (skipping the BIP step described in the previous subsection) 

because of the sub-optimality of the heuristics [1]. 

5.4.2.1 Example of Prioritization of Customers within the Minimal 
Set of Customers for Profiling 

Let us use the data from the example described in Section 5.4.1.1. The minimal set of 

customers for prioritization is {c2, c3, c4}. “Non-covered” defects per customer are {{d1, 

d2}, {d2, d3, d4}, {d4, d5}}, respectively. Since c3 discovered the largest number of 

defects, we pick c3 as the first customer to profile. We now mark defects d2, d3, and d4 as 

“covered” and remove them from the non-“covered” list.  The defects list is changed to 

{{d1}, {∅}, {d5}}: customers c2 and c4 have one uncovered defect. We arbitrarily pick c2 

as the second customer for profiling and c4 as the third one. 

                                                 
41 That is heuristic making locally optimal choice at each stage. 
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5.5 Validation Case Study 
Our experimental ground is a complex commercial software application with over 10 

million lines of uncommented source code and a large customer base. To verify our 

technique, we selected defects for core components42 of the software under study over a 

five-year period43. These defects were discovered by a few thousand customers.  

In general, depending on a particular goal, an analyst may focus on a specific set of 

defects. For example, one can filter defects by: 

• severity, 

• relation to a specific functionality, 

• specific symptoms (e.g., crash, data corruption). 

5.5.1 Exploratory Analysis 

To analyze defects based on the quadrants described in Section 5.3, we create a scatter 

plot of the total number of discovered defects versus the average number of rediscoveries 

per defect per customer (where each point represents a specific customer). Results are 

shown in Figure 30. As we can see, the quality assurance team does a good job of finding 

defects in frequently executed paths: there are not too many frequently rediscovered 

defects. Therefore, if we split Figure 30 in four quadrants symmetrically, there will be no 

customers in the top-right (HH) quadrant (i.e., there will be no “ideal candidates for 

profiling” as per Table 14 classification). We have to split the plot asymmetrically. 

Quadrant borders are selected manually and denoted by dotted lines in Figure 30. The 

data can then be described as 

                                                 
42 Internal defects database data was validated using various data mining procedures. 
43 In order to stabilize the number of discoveries per defect, we select defects that were first discovered at 
least six months before this case study was performed. 
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• Bottom-left (LL) and Top-left (LH) quadrants: majority of the customers find a 

small number of defects that are rediscovered infrequently (LL) or frequently 

(LH) (“not interesting from a profiling perspective”); 

• Bottom-right quadrant (HL): a small number of customers discovers infrequently 

rediscovered defects (“potential candidates for profiling”); 

• Top-right quadrant (HH): a fraction of customers discovers frequently 

rediscovered defects (“ideal candidates for profiling”). 

Let us use our automatic procedure to select a minimal set of customers for profiling. 
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Figure 30. Total number of discovered defects vs. average number of rediscoveries 

per customer. Dotted lines depict borders of quadrants described in Table 14. 

5.5.2 Selection of the Minimal Set of Customers 

Manual selection of customers to profile is impractical. Therefore, we apply the BIP 

technique described in Section 5.4.1 to our dataset. We assume that all customers have 

equal weight: wi = 1 for all i in equation (5.1).  The problem is solved using IBM® 
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ILOG® CPLEX® solver [5]. The solution to the BIP problem is found in less than one 

second (on an Intel® Pentium® 4 computer) using the solver’s default optimization 

routines. 

Analysis shows that we need to profile 26% of our customers to cover all the defects 

found in the field. Results of customer prioritization (using greedy heuristics as described 

in Section 5.4.2) are shown in Figure 31 and Figure 32 (“all defects” curves) and Table 

16 (“defects discovered at least 1 time” row). As we can see, the cumulative coverage 

curve is steep: we need to profile 9% of customers to cover 80% of defects. However, in 

the case of a large customer base, we may need to decrease a set of customers to profile 

even further. In order to do this, based on the criteria shown in  
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Figure 31. Percentage of the total number of customers needed to cover a certain 

percentage of defects of interest. 

Table 14, we will focus on the defects that were discovered multiple times. Results are 

shown in Figure 31, Figure 32, and Table 16. The minimal set of customers decreases 
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rapidly as the number of defects of interest decreases. For example, we need to profile 

0.9% of the customer base to cover all defects discovered at least 10 times. 

 

Table 16. Percentage of the total number of customers needed to cover X% of 

defects discovered at least Y times 
Cover X% of defects Defects discovered 

at least Y times 80% 100% 
1 8.9% 25.9% 
2 3.5% 11.1% 
5 1.1% 3.0% 
10 0.4% 0.9% 
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Figure 32. Percentage of the total number of customers needed to cover a certain 

percentage of defects of interest (log-scale). 
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5.6 Summary 
Operational and usage profiles collected from customers provide developers and testers 

with valuable quantitative information on usage patterns of software being developed. 

Unfortunately, gathering such profiles from a large set of customers can be challenging 

because of time and resource constraints; moreover, customers may refuse to provide 

access to their systems for confidentiality and legal reasons. This limitation also leads to 

duplicate information being gathered, as such, information about customer defects can 

help us to narrow down a list of candidate customers to profile.  

In this paper we discussed a technique for the selection and prioritization of a minimal set 

of customers for operational and usage profiling to cover a certain set of defects. This 

was achieved using the Binary Integer Programming algorithm. After identifying a 

minimal set of customers for profiling, we used greedy heuristics to prioritize the set of 

customers. We performed a validation case study that confirms that this approach is 

scalable and can produce output for a large customer base (involving thousands of 

customers) within seconds. In addition, we discuss defect prioritization schema based on 

frequency of defect rediscovery by customers. Analysis results can then be used to close 

gaps in testing coverage and to improve maintenance process. 
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Chapter 6  

6 Modelling Assumptions and Requirements in the 
Context of Project Risk 

The importance of assumptions in Requirements Engineering has long been recognised. 

However, to the best of our knowledge, no quantitative models for the relation between 

assumptions and requirements are yet available. We propose a temporal mathematical 

model of the relationship between assumptions and requirements in the context of 

predicting risk associated with assumptions failure in a software project. This model 

incorporates two sources of structure. One, the inter-relation between assumptions and 

requirements are described using a Boolean network. Two, the invalidity of assumptions 

and the requirements change, it is assumed, may be modelled as a stochastic process. The 

chapter gives an illustrative example of how the model can be used to assess project risk. 

6.1 Introduction 
It is generally accepted among software engineers that assumptions underlie the 

requirements “iceberg” [12, 13] and are reflected in software. For example, the 

requirements for a stack of numbers could have an undocumented underlying assumption 

that the stack is so large on the physical device that the users could not possibly fill it up. 

In software, therefore, it is quite conceivable that the programmer did not test for an 

overflow condition. Unfortunately, the assumption can be incorrect and lead to a software 

failure. Many researchers thus emphasize the importance of documenting assumptions 

[16, 18, 13], [22, pp. 102, 157]. In our simple stack example above, the maximum 

allowable stack size should be made explicit, which would help in writing code to test for 

an overflow situation and thereby prevent software from failing at that point. Lehman and 

Ramil [16], in fact, even suggest that personnel have to be trained in recording and 

managing assumptions. 



 

 

121

However, the validity of assumptions can change with time, for example, when the 

application domain or the software's context changes [3, 16, 17]. For example, if the 

stack software is ported to a device with a smaller possible stack size then the software 

can fail again if this limit is not appropriately modified upon porting. Moreover, the 

assumptions can be wrong from the very beginning, though the developers are not aware 

that they are false [7, pp. 271-272]. 

In practical terms, the invalidity of assumptions is a source of problems [16, 12] for 

software developers and users alike. For developers, for example, invalid assumptions 

can imply having to fix software as a consequence of software failure or quality 

degradation, not to mention customer dissatisfaction, loss of market share and reputation. 

For the users, invalid assumptions can imply anything from poor software services to 

increased cost of business operations because of software failures. 

Thus, during software modification the validity of the old assumptions need to be 

rechecked, not only the correctness of “old code” as generally done during regression 

testing. Also, developers need to ensure that the new assumptions do not violate old ones 

[7, pp. 271-272], [14, 16] and if they do then the conflicts need to be resolved. All of this 

suggests that assumptions need to be explicitly recorded and managed, and changes to 

them predicted and tracked. 

For an operational system, the volatility44 of the validity of the assumptions can imply 

shocks to the associated implemented requirements which imply, at best, a diminishing 

value of the existing software system and, at worst, software failure with corresponding 

consequences to the end user. For a software project in the planning or development 

                                                 

44It is not only assumptions that are volatile. Requirements, independent of the underlying assumptions, 

can become “invalid”, say, because the stakeholders need different services from the software over time. In 

this paper, we simply treat any change in requirements as the removal of old ones followed by the insertion 

of appropriate new ones. 
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stages, such volatility translates into an invalidity risk. The risk here is that the software 

being developed (or changed) may not be as desirable upon completion as first imagined. 

It is thus important to be able to predict, during the early stages of requirements 

engineering and periodically from then on during development, the amount of invalidity-

risk inherent in the software project. Just note that in a software project there are also 

other kinds of risks to contend with, such as technical risks, personnel risk, budgetary 

risk, timely deliverability risk, business risk, etc., which are out of scope of this paper45. 

For the prediction of invalidity risk, there is a need to model the relation between 

assumptions and requirements and, using this relation, compute a measure of risk. The 

key idea is that if an assumption becomes invalid, it may reduce the validity of the 

associated requirements, thereby increasing risk. But, of course, there are assumption-

assumption and requirement-requirement relationships, which must also be considered in 

the model. The paper defines specific metrics which serve to predict risk. 

To put such a model into practice, we need to consider at least two scenarios. One is 

intra-release cycle-time, where invalidity risk is predicted at the start of the project for 

different time-stamps within the release cycle until the project-end. This would give us 

intra-release risk trends. The second scenario is prediction over multiple releases to 

obtain a risk trend over a longer period of time. The chapter describes an algorithm to 

cover both of these scenarios and gives an example (from a banking application) of how 

the model could apply in practice. 

The next section describes related work. This is followed by the requirement-assumptions 

relationship in Section 6.3. Section 6.4 describes the modelling tools: boolean network 

and stochastic processes. Section 6.5 then describes the properties of requirements, the 

                                                 

45Therefore, unless indicated otherwise, from here on in, “risk” is meant to mean invalidity risk. 
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risk metrics based on these properties, and how to model risk trends. Section 6.6 gives an 

example simulation from a banking application. Section 6.7 then concludes the chapter. 

6.2 Related work 
The subject of assumptions in software systems is not new by any means. As early as the 

late 1960's, Lehman studied the growth complexity of the OS/360 operating system and 

had made growth predictions based on certain assumptions about the development 

processes that would be used [15]. More recently, together with Ramil [16], Lehman has 

explored assumptions more deeply in the context of software evolution, especially: 

domain changes and their impact on assumptions, mapping between assumptions and 

software elements, relationships with other entities of interest (e.g., economic and 

societal factors), need for documentation and review, a program's impact on the 

operational domain, management of assumptions, and so on. Also, many other authors, as 

described in the introduction, have referred to assumptions in their work. 

It is not all theoretical however. In practice, developers make (explicit or implicit) 

assumptions throughout a software project though there is little computational use of 

assumptions in tools that could aid in achieving some tangible project goals, such as time 

to delivery, development within budget and quality upon delivery. 

Based on some meta-models in requirements engineering [19] in which the entity 

assumption is related to other entities such as requirement and rationale, requirements 

traceability tools, such as Doors [21], Rational Suite AnalystStudio [9], and CORE [2] 

have been developed. While such tools allow representation of project items and 

traceability using inter-relationships according to the meta-model followed, they are 

mainly documentation and report generating tools as opposed to development or analysis 

tools. 

In the research community, there are goal-oriented requirements engineering approaches 

and tools [11] which model the assumptions. The general objective is to derive a 

consistent and valid set of requirements for further system development. The interest in 
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the subject of assumptions, in this community, has been high enough to attract a 

conference panel session dedicated to this topic [8]. Besides giving motivation for 

assumptions, Greenspan raised some important questions for this panel session, such as: 

Who needs to keep track of the assumptions? How do we elicit assumptions? Whether 

there would be any immediate benefits of doing so? How can we record and manage the 

information? How do we use it? How much of the reasoning can be done by tools? 

One of the concerns with the work on assumptions, however, is that developers are 

reluctant to put time and resources into documenting assumptions because the payback 

cycles can be long and, often, not to the person who originally documented the 

assumptions. For example, the assumptions underlying a requirement can be quite useful 

in questioning the validity of the requirement long after it has been implemented, so here, 

the payback is much later, possibly to a new person on the job. 

One way to overcome this resistance, which we learned from our industrial collaboration, 

is external or internal legislation which would require that assumptions (and their 

rationale) be documented. Thus, in legal situations, there would be traceability of the 

decisions made. This is an organizational factor which also does not lend towards a 

concrete project goals but is usually justified in terms of business requirements. 

Thus, there is a need to find ways to make short-term use of assumptions with 

demonstrable project benefits. The goal of our work is precisely in this direction. 

Operationalising our proposed model would lead to tangible results in terms of 

determining system invalidity-risk in different contexts. For example, when considering 

alternative strategies for providing a superior solution to a user, our model could help in 

determining the relative levels of system invalidity. Also, as a project progresses, it is 

important to be able to determine periodically the level of future risk perceived at that 

time so that corrective action can be taken as early as possible. The proposed model is 

thus an important aid to management decisions in software projects. 
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6.3 Requirements & Assumptions 
Let us now formalize the assumptions properties, discussed in Section 6.2. 

6.3.1 Assumptions Formalization 

There exists a finite set of assumptions CA , which completely describes the system. 

Elements in CA  are assumed to be atomic, i.e., if the assumption is non-atomic, then it 

can be represented as a larger set of simpler assumptions. As stated in [16], assumptions 

can be explicit or implicit, conscious or unconscious. We can quantitatively measure only 

documented assumptions. However, it is almost impossible to document all assumptions 

in CA  (see [16] and [7, p. 275]), since there is evidence that typical software projects 

embed at least one assumption per ten lines of code [14]. For this model we assume that 

the captured assumption set depicts the fundamental properties of the system. 

We state that we will be able to capture a finite subset of assumptions A , such that 

CA A⊂ , depicting the main properties of the software project. The number of 

assumptions in A  is given by AN  (the count starts from one). 

Let us introduce the binary variable ( ) ( , )V j t⋅ , having two states  

 ( )

1,  if th member of ( ) is valid at time 
( , ) = ,

0,  if th member of ( ) is invalid at time 
j t

V j t
j t⋅

− ⋅⎧
⎨ − ⋅⎩

 (6.1) 

 where ( )⋅  represents some set (not necessary a set of assumptions) and V  returns the 

validity state of j -th member of the set, current time is denoted by t . 

The time t validity of the j -th assumption is then given by ( , )AV j t  and may be in two 

states − valid (1) or invalid (0), for = 1,..., Aj N . We assume that the switching process is 

one-way, i.e. once the assumption becomes invalid it cannot become valid again. 
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Assumptions may depend on other assumptions in the set. Let us denote a dependent or 

“child” assumption as aα  and the set of parent assumptions as pA . If all assumptions in 

pA  fail, then aα  fails too46:  

 
=1

( , ) = 0 ( , ) = 0,
NAp

A Apj
V j t V tα→∨  (6.2) 

where ∨  is the logical “or” and Ap
N  is the number of elements in pA . 

pA  can be divided into two disjoint subsets: the standard assumptions stdA  and the key 

assumptions keyA , =p std keyA A A∪ . If at least one assumption from keyA  fails, then so 

does aα :  

 
=1

( , ) = 0 ( , ) = 0,
NAkey

A Akeyj
V j t V tα→∧  (6.3) 

where ∧  is the logical “and”, Akey
N  is the number of elements in keyA . 

If all assumptions in stdA  fail, but at least one assumption in keyA  is valid, it does not 

imply the failure of aα : 

 
=1 =1

( , ) = 0 ( , ) = 0,  if ( , ) = 1,
NN AA keystd

A A Astd keyj j
V j t V t V j tα∨ ∧g  (6.4) 

                                                 
46 A → B means if A is true then B is also true. 
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where Astd
N  is the number of elements in stdA . Although the failure of all assumptions in 

stdA  does not imply the failure of aα , this event could affect the probability of future 

survival of aα . This will become evident when we discuss stochastic models for failures 

in Section 6.4.2. These relations should be specified by the user for each particular case. 

Note that when no key assumptions are present Equation (6.4) transforms to Equation 

(6.2). 

6.3.2 Requirements Formalization 

As in the case of assumptions, we have a finite set of requirements CR . We are capable of 

capturing a finite subset of requirements R  having RN  elements. A requirement in our 

model has a value of '1' or '0'. A '1' at any given time-state implies that the requirement is 

desirable (above some threshold). A '0' at any given time-state implies that either the 

importance of the valid requirement is below a certain threshold and, hence, is not 

desirable; or that the requirement is not valid. Both of these types of '0' state can induce 

change at the appropriate future time thereby increasing invalidity risk. However, we will 

still apply (6.1) in the sense that the term “valid” (“invalid”) is interpreted as “desirable” 

(“undesirable”). 

The j -th requirement is given by the binary variable ( , )RV j t . As with assumptions, once 

a requirement is removed from specification, it cannot be re-inserted there in the future. 

The removal of a requirement in the specification list may lead to modification or 

removal of other requirements. Similar to assumptions, we postulate a dependent 

requirement rβ  and the set of parent requirements pR . Let the parent set be further 

divided into the standard stdR  and the key keyR  disjoint subsets of requirements, 

=p std keyR R R∪ . 

In contrast with the assumptions model, the removal of all requirements in pR  will not 

necessarily (if keyR  is empty) lead to removal of rβ  from R :  
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=1

( , ) = 0 ( , ) = 0,
NRp

R Rpj
V j t V tβ∨ g  (6.5) 

where Rp
N  is the number of elements in pR . 

A removal of a single requirement in keyR  leads to the removal of rβ  :  

 
=1

( , ) = 0 ( , ) = 0,
NRkey

R Rkeyj
V j t V tβ→∧  (6.6) 

where Rkey
N  is the number of elements in keyR . 

The removal of all requirements in stdR  does not imply the removal of rβ :  

 
=1

( , ) = 0 ( , ) = 0,
NRstd

R Rstd
j

V j t V tβ∨ g  (6.7) 

where Rstd
N  is the number of elements in stdR , but, as in the assumptions case, may 

influence the probability of removal of rβ .Let us now consider how the assumptions 

influence requirements. 

6.3.3 Requirements & Assumptions Interaction 

In Sections 6.3.1 and 6.3.2 we treated assumptions and requirements independently. 

However, we know that assumptions influence requirements. We extend the ideas in the 

previous section and say that requirement rβ  will depend not only on a parent set of 

requirements pR  but also on a set of underlying assumptions pA  split into stdA  and keyA . 

Thus we postulate that the failure of all underlying assumptions or at least one key 

assumption will lead to “undesirability” of rβ ; the failure of all assumptions in stdA  will 

not lead to “undesirability” of rβ , given that at least one assumption in keyA  is valid: 
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=1

=1

=1 =1

( , ) = 0 ( , ) = 0,

( , ) = 0 ( , ) = 0,

( , ) = 0 ( , ) = 0,  if ( , ) = 1.

NAp

A Rpj

NAkey

A Rkeyj

NN AA keystd

A R Astd keyj j

V j t V t

V j t V t

V j t V t V j t

β

β

β

→

→

∨

∧

∨ ∧g

 (6.8) 

Let us now consider the mathematical tools suitable for modelling this behavior.  

6.4 Modelling tools 
The state change of assumptions and requirements happens for various reasons, such as 

• An assumption or requirement was elicited incorrectly.  

• The operational domain changes which, in turn, leads to changes in the 

assumptions and requirements sets.  

• An assumption (or requirement) changes state because parent assumption(s) (or 

requirement(s)) changes state.  

We can think of the first two points as an “external force” acting on the system. The third 

point can be treated as an “internal force”, since once the relations between the members 

of the set have been identified, the system becomes closed -- member states of a given set 

depend only on the state of the parent set members. Let us first discuss an approach to 

modelling the “internal force” through the use of boolean networks. This is followed by a 

description on modelling the “external force” by an event arrival process. We then 

synthesize the two models into a hybrid model to show, algorithmically, how the model 

iterates through the time-stamps within the cycle-time for one release or through multiple 

cycle-times in the case of evolutionary releases. The purpose of such modelling is so that 
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later we can use these models to assess project risks, for example, assumptions and/or 

requirements change. 

6.4.1 Boolean network 

For modelling the dependencies between child and parent members we suggest a Boolean 

networks approach (see, for e.g., [10, pp. 182--203]). Boolean networks have many 

applications and are widely used in modelling different cybernetic and neural networks, 

molecular components of immune systems, etc. The network is constructed from “on-off” 

nodes that can take only binary values. The system's behavior47 is governed by a set of 

switching rules, which are called Boolean functions. Consider the following example. 

Example 6.4.1  Let us consider the toy model inspired by the study of code decay in the 

telephone switching systems [4]. The authors say that “...many of the original system 

abstractions assume that subscriber phones remain in fixed locations”. Let this 

assumption be represented by aα . In turn, aα  may depend on three other assumptions: 1a  

− the customer does not need the roaming feature (for stationary phones); 2a  − the 

hardware does not support roaming; 3a  − no cell phones exists. 

The relation between the above assumptions may be quite complicated. However, for 

pedagogical purposes, let us consider two simple configurations. 

1. Configuration I. The aα  will be valid until all three parent assumptions fail. We 

can write the Boolean function as [ (1, ) (2, ) (3, )] = 0 ( , ) = 0A A A AV t V t V t V tα∨ ∨ → , 

the graphical representation is given in Figure 33.a.  

                                                 

47System behavior is in fact a sequence of system states at different time-stamps of interest, and system 

state is defined by the validity of the assumptions and requirements at any given time. 
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2. Configuration II. Assume that 3a  is the key assumption. Thus, if it fails then aα  

fails too, even if 1a  or 2a  are still valid, see Figure 33.b. However, as in 

Configuration I, if only 1a  and 2a  fail then aα  is still valid. The Boolean function 

is given by (3, ) = 0 ( , ) = 0A AV t V tα→ ,  

 

Figure 33. Example 4.1. Set up of assumptions for a. Configuration I; b. 

Configuration II. Solid arrows denote standard relationship, dotted arrows denote 

key relationship. 

We may check how the Boolean functions affect the system state. In Table 17 we show 

how the current state of nodes at time T  will affect the Boolean function at the next time 

instant T dt+ , where dt  is an infinitesimal time increment (we assume that the changes 

happen immediately). 

6.4.2 Modelling Event Arrival 

There are three key aspects of event modelling. One, at initial time the Boolean network 

is initialized with validity values at each node. Two, each requirement has a degree of 

importance, which can change over time. Three, the validity of each requirement can 

change over time. This section describes how this is accomplished.  
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Table 17. Example 4.1. State changes of assumptions. 

T  T dt+  
Configuration Configuration 

I & II I II 
aα  1a  2a  3a  aα  aα  
1 0 0 0 0 0 
1 0 0 1 1 1 
1 0 1 0 1 0 
1 0 1 1 1 1 
1 1 0 0 1 0 
1 0 1 1 1 1 
1 1 0 0 1 0 
1 1 0 1 1 1 
1 1 1 1 1 1 

6.4.2.1 Modelling Incorrect Elicitation 

As mentioned above, an assumption or requirement may be invalid (i.e, in state zero), 

even at initial time 0t , perhaps without knowing it. This can be captured by initializing 

the values in the network randomly, using the random draw from some statistical 

distribution. For instance, the binomial distribution is well suited for this type of problem. 

The probability of incorrect elicitation may be determined based on historical data and/or 

expert knowledge. 

As time goes by, the operational domain and user expectations change. This may lead to 

assumptions failure and requirements modification or removal. There are two sources of 

problems that may lead to this event. The first one comes from the fact that importance of 

requirement changes with time and the decrease of the importance value below a certain 

threshold may lead to removal or change of the requirement. The second one comes from 

the fact that validity of an assumption or requirement can change with time.  

6.4.2.2 Modelling Requirement Importance  

Let us denote the time t importance of j -th requirement as ( , )I j t . In general, ( , )I j t  

should be modeled as a stochastic process (in the simplest case it can degenerate to a 

constant value), since it is in general impossible to specify the importance value at some 
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future time instance. The parameters for this process and the value of the threshold ( )I jτ  

for j -th requirement should be obtained from the stakeholder. Let us consider an 

example.  

Example 6.4.2  Suppose that we elicited requirement r  and the stakeholders told us that 

the current importance is equal to four out of ten. They expect the importance of this 

requirement to grow by two units per year and the variance of this prognosis is equal to 

three units per year. They also mentioned that if a requirement importance drops below 

two units it will be removed from the specification. Let us assume that we may model the 

dynamics of ( , )I r t  by a stochastic processes, to be concrete, consider here a Brownian 

motion [20, pp. 601-638] 

 
Deterministic Random

( , ) = ( ) ,dI r t dt dW tμ σ+
�	
 ���	��


 (6.9) 

where μ  and σ  are constants, and ( )W t  is a Wiener process [20, pp. 601-638]. We can 

interpret μ  as the velocity of the deterministic drift and σ  captures the power of the 

random diffusion component. It turns out (see [20, pp. 601-638] for details) that the 

conditional probability distribution of importance at time t dt+ , given the importance 

value at time t  is normal with mean ( , )I r t dtμ+  and a variance 2dtσ . In our case = 2μ  

and = 3σ . An example of the five realizations of ( , )I r t  is given in Figure 34. As we 

can see, even though we expect ( , )I r t  to grow, there is still some chance that the 

requirement will be removed from specification.  
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Figure 34. Example 4.2. Five random realizations of ( , )I r t  

6.4.2.3 Modelling Validity Change 

The evolution in time of the Equation (6.1) for requirements and assumptions can be 

naturally modeled by some event arrival process. The family of Poisson processes are 

used to model real and discretely countable events. For our purposes we are interested in 

the time of the first event arrival triggering a state change at j -th node. A Poisson 

process is governed by an intensity function ( , )j tλ . We can think of ( , )j tλ  as the 

average number of events arriving per unit time. Depending on the functional form of 

( , )j tλ  the processes have different names: if ( , )j tλ  is constant --- a Poisson process; if 

( , )j tλ  is a deterministic function of time --- an Inhomogeneous Poisson process; and if 

( , )j tλ  is governed by stochastic process --- a Doubly Stochastic Poisson process or Cox 

process. For a detailed discussion see, for e.g., [20, pp. 288-327] and [1, pp. 72-82, 134]. 
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The intensity of the process may be defined by interviewing stakeholders on their opinion 

about the probability (or intensity) of failure of assumption or requirement at some future 

date. Based on this data, we may decide which process is suitable for each particular case. 

The relation between the time t probability of failure of the j -th node, denoted by 

( )[ ( , ) = 0]P V j t⋅ , and intensity is given by  

 ( )
0

[ ( , ) = 0] = 1 exp ( , ) ,
t

t
P V j t E j s dsλ⋅

⎧ ⎫⎡ ⎤− −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭∫  (6.10) 

where [ ]E ⋅  is the expectation operator. As an example, let us consider the probability of 

failure behavior governed by a Poisson process.  

Example 4.3  For a Poisson process with constant intensity  ( ) ( , )j j tλ λ≡  Equation 

(6.10) simplifies to  

 ( ){ }( ) 0[ ( , ) = 0] = 1 exp ( ) .P V j t j t tλ⋅ − − −  

6.5 Predicting risk at time t 

6.5.1 Risk metrics 

Let us first introduce the following metrics.  

• Validity. Time t validity ( , )RV k t  of the k -th requirement defined by Equation 

(6.1) is also used as a risk metric. 

• Importance. Time t importance ( , )I k t  of the k -th requirement, introduced in 

Section 6.4.2.2 is also used as a risk metric.  

• Children weight. Requirements may depend on other requirements --- failure of 

one requirement may lead to the failure of another. Therefore, the more children a 
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given requirement has, the more important it is. In order to capture this property, 

we introduce the time t children weight ( , )C k t  of the k -th requirement:  

 
=1

=1

=1

( , ) , ( , ) 0
( , )( , ) = ,

0, ( , ) = 0

NR
N jR
j

NR
j

c k t c j t
c j tC k t

c j t

⎧ ≠⎪⎪
⎨
⎪
⎪⎩

∑
∑

∑
 (6.11) 

where ( , )c k t  is the overall number of children of the k -th requirement, and the 

denominator is used for standardization. 

• Use-cases participation weight. One requirement may participate in more than 

one use-case. The more use-cases it belongs to at a particular time, the more 

weight it has. The use-case weight of the k -th requirement is defined as  

 

( , )

=1

( , )

=1 =1

1
( , )( , ) = ,1

( , )

N k tU
i

N N l tR U
l j

m i tU k t

m j t

∑

∑ ∑
 (6.12) 

where ( , )m i t  is the time t number of requirements in the i -th use-case, ( , )UN k t  

is the time t number of use-cases in which the k -th requirement participates, and 

the denominator is used for standardization.  

Naturally, a user can collect additional properties of requirements and construct other 

measures that might be more suitable for her needs. Also, it is not clear at this time 

whether the measures based on the above properties can be aggregated into a combined 

measure. For this reason, the invalidity risk is predicted in the form of the n-tuple, 

denoted by M , and composed from the measures: validity ( )RV , importance ( )I , 

children weight ( )C , and use-case participation weight ( )U : 

 ( , ) = { ( , ), ( , ), ( , ), ( , )}.RM k t V k t I k t C k t U k t  (6.13) 
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For a set of requirements we can obtain a single value by summing up the values for each 

of the metrics for all the requirements in the set. For example, for the set of requirements 

R  of size RN  the total time t metric is given by 
=1

( , ) = ( , )NR
j

M R t M j t∑ . 

6.5.2 Single-run Algorithm: System State at Final Time 

Recall that “system state” defines how valid the system is at a given time. We merge the 

two types of models discussed in Sections 6.4.1 and 6.4.2 in order to compute the system 

state starting from the initial time to some final time in one simulation. The steps needed 

for this purpose are summarized in the following pseudo-algorithm. 

Suppose the initial time is 0t  and we want to simulate until time fT  with time step tΔ . 

We have at least two scenarios. One, intra-release cycle-time, where fT  is the release 

date for the software system and tΔ  is periodic assessment of the validity of the 

assumptions and requirements, say, based on stakeholder information. Two, over multiple 

releases, where fT  is some distant date of interest and tΔ  is release-to-release dates. 

1. Set the current time 0=it t . 

a.  Initialize the Boolean network and define Boolean functions and 

intensities of the event processes for each node. 

b. Initialize the system with random values based on the stakeholders opinion 

of the probability of incorrect elicitation of assumptions or requirements. 

c. Execute Boolean functions to determine the effect of validity changes.  

d.  Modify the intensities of event arrival for the nodes that were affected, 

but have not changed to the zero state (effect of parent assumptions from 

stdA  and stdR  specified by the user). 
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2. While i ft T≤  

a. Set the time 1=i it t t− + Δ . 

b. For each node j  where ( ) ( , ) = 1iV j t⋅  

c. Determine the time of switching, eT , as the time of first event arrival of 

the associated Poisson-type arrival process.  

i. If node is an assumption then 

1. If <e iT t  set ( ) ( , ) = 0iV j t⋅ . 

ii. If node is a requirement then 

1.  Determine the value of ( , )iI j t  

2. If <e iT t  or ( , ) < ( )iI j t I jτ  set ( ) ( , ) = 0iV j t⋅ . 

d. Do steps 1.c and 1.d. 

The result of executing this algorithm is the state of the system in terms of the validity of 

each requirement and assumption nodes at some final time fT . Note that essentially we 

have executed the algorithm only once from 0t  to fT . This gives us only one realization 

(simulation run) of the system state at time fT . The prediction from one realization is 

clearly not representative. We are actually interested in the expected value of the 

prediction for all possible realizations of system evolution by taking an average of 

multiple simulation runs. This is the subject of the next section.  
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6.5.3 Multiple-runs Algorithm: System State at Final Time 

Because of the randomness built into this we cannot simulate all possible realizations of 

the system. For this kind of problem we can apply Monte Carlo techniques, see [6]. The 

Law of Large numbers tells us [6] that for sufficiently large numbers of realization the 

expected value can be approximated by the average values of the n-tuple metric at time 

fT  obtained from different runs:  
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=1 =1
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 (6.14) 

where L  is the number of system realizations, and ( ) ( , )n fk T⋅  is the ( )⋅  metric of n -th 

system realization at time fT  for k -th requirement. 

The process can be summarized by the following pseudo-algorithm: 

1. Set = 0sum . 

2. for = 1n  to L  

a. Do the algorithm from Section 6.5.2 and obtain the value of ( , )n fM k T .  

b. Set = ( , )n fsum sum M k T+ .  

3. Estimator ( , )fM k T
�

 is given by ( , ) = /fM k T sum L
�

, which is equivalent to 

=1

1( , ) = ( , )L
f n fn

M k T M k T
L ∑

�
.  
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Let us now look at an example that will utilize all the mathematical tools described 

above. 

6.6 Simulation Example 
The ATM Banking system needs access to the database of bank clients. The system must 

be operational one year from now. Let us denote this requirement as 1r . Two groups of 

stakeholders gave the following requirements: we have to implement the system using a 

centralized database, denoted as X1 model, requirement 2r ; or a distributed database 

denoted as X2 model, requirement 3r . Clearly, 2r  and 3r  are conflicting requirements. 

The stakeholders gave the following assumptions underlying 2r : 

1a  − the developers are proficient in implementing X1 model, 

2a  − the X1 will handle the heavy transaction load;  

and the following assumptions for 3r : 

3a  − the developers are proficient at implementing X2 model;  

4a  − the X2 will handle the heavy transaction load.  

We also add a single assumption to 1r : 

5a  − we assume that one year term given for implementation is a strict deadline. 

We may also deduce that the invalidity of 4a  will imply invalidity of 2a . The failure of 

2r  or 3r  will lead to the failure of 1r . 
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We have two methods for implementing a single use-case; which one is less risky? Let us 

assume that there is no relation between these sets of assumptions and requirements, and 

the rest of the system. Thus, we can treat the use-cases as separate systems. 

Note that these use-cases are mutually exclusive. That is why during the calculation of 

ˆ ( , )U k t  we assume that there is only one use-case. We model the dynamics of ˆ( , )I j t  

using Brownian motion described in Example 6.4.2, using (6.9). The properties collected 

from the stakeholder are given in Table 18 and Table 19. Both use-cases will have 1r  in 

them. In order not to confuse them, let us denote the one in the X1 model as 1r�  and the 

one in the *X2 model as 1r�� . Both instances of requirement 1r  will have the same 

properties at start time. Therefore, the X1 model requirements set will be given by 

1 1 2= { , }R r r� , and X2 set by 2 1 2= { , }R r r�� . The relations between assumptions and 

requirements are given in Figure 35. 

 

Figure 35. Simulation setup. Circles denote assumptions, squares denote 

requirements. Solid arrows denote standard relationship, dotted arrows denote key 

relationship. 
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Table 18. Assumptions properties 
 

1a  2a  3a  4a  5a  

 ( , )tλ ⋅   0.05  0.15  0.20  0.05  0.01 

Table 19. Requirements properties 
 

1R  2R  
 

1r�  2r  1r��  3r  

 ( , )tλ ⋅    0.01  0.02  0.01  0.02 

( ,0)I ⋅    0.60  0.40  0.60  0.40 
μ    0.10  0.25  0.10  0.20 
σ    0.10  0.20  0.10  0.25 

( ,0)C ⋅    0.00  1.00  0.00  1.00 

 ( ,0)U ⋅   0.50  0.50  0.50  0.50 

We simulate the system behavior from 0 = 0t  until = 1fT  (we assume that time is 

measured in years) with a weekly time step = 1/ 52tΔ . We also say that the requirements 

and assumptions are elicited incorrectly with probability 0.02  (per year) and model this 

using a binomial distribution. We also assume that failure of any parent standard node 

will lead to an increase of child node intensity by 10%. 

The average values of metrics for all requirements are obtained from ten thousand 

realizations. We re-run each system realization simulation one hundred times to obtain 

the standard deviation (sd) measurements. In order to obtain cumulative measures for 

requirements in 1R  and 2R  we sum up the metric values for each of the requirements in 

the use-case. The smaller the value the bigger the risk. 

The metric values at = 1fT  are given in Table 20. The dynamics of the metrics over time 

is given in Figures 4, 5, 6, and 7. From these Figures we see that values of all four 

metrics at the initial time were higher for the 2R  set than the 1R  set, i.e., 

2 1( ,0) > ( ,0)M R M R
� �

. However, at the final time, three metrics of the n-tuple 2( ,1)M R , 

namely 2
ˆ ( ,1)RV R , 2

ˆ ( ,1)C R , and 2
ˆ ( ,1)U R , are smaller than the same metrics from 
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1( ,1)M R
�

. This tells us that the invalidity risk associated with implementation of model 

X2 would be higher than the one associated with model X1. On the other hand, the 

importance 2
ˆ( ,1)I R  of requirements in 2R  is still higher than in 1R . Based on this 

management can decide whether to implement 1R , which has less invalidity risk, or to 

implement 2R , which is deemed more important at time fT . 

 

Figure 36. The value of ˆ( , )V t⋅  
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Figure 37. The value of ˆ ( , )C t⋅ . 

 

Figure 38. The value of ˆ ( , )U t⋅ . 
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Figure 39. The value of ˆ( , )I t⋅  

Table 20. Metrics values at = 1fT  (± denotes standard deviation) 

    ˆ ( ,1)V ⋅  ˆ( ,1)I ⋅  ˆ ( ,1)C ⋅  ˆ ( ,1)U ⋅  

1r�  0.670 0.402 0.000 0.335 

± 0.005 0.003 0.000 0.002 

2r  0.711 0.469 0.670 0.377 

± 0.004 0.003 0.005 0.003 

1R  1.381 0.871 0.670 0.711 

± 0.005 0.003 0.002 0.002 

1r��  0.648 0.455 0.000 0.324 

± 0.004 0.003 0.000 0.002 

3r  0.689 0.436 0.648 0.365 

± 0.004 0.003 0.004 0.003 

2R  1.337 0.891 0.648 0.689 

± 0.004 0.003 0.002 0.002 
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6.7 Conclusions & Future Work  
In this paper we establish a temporal, mathematical, model which describes the 

interactions between assumptions and requirements of a software system in the context of 

predicting the system's validity risk. We capture these relations using a Boolean Network. 

The validity of the system over time is modeled using stochastic processes. An 

illustrative example from the banking domain is given. In order to perform computations 

we have developed a prototype software tool (not described in this paper due to lack of 

space). 

This work cuts through the barrier solidly experienced by practitioners that documenting 

assumptions does not have a short-term payback [8]. In fact, it liberates them into using 

documented assumptions (and requirements) properties to make assessment about a 

system's invalidity over time (either in the intra-release context or over multiple releases 

context). 

Voicing the concerns of numerous researchers, Finkelstein and Kramer, in [5], pose a 

critical question as to how to predict the effect of requirements change on a software 

system. In this paper, we have demonstrated a proof of concept that modelling 

assumptions and related requirements, supported by an underlying computing engine 

(Boolean Network and stochastic processes), it is indeed possible to predict the effect of 

external changes on the validity of a software system over time. 

Our work in this area continues with investigation on system usability assumptions 

developers make and how they correspond to system testing amongst other aspects of 

software development. 
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Chapter 7  

7 Managing the Escalation of Requirements  
In this chapter we describe quantitative models that can be used for managing the 

injection of requirements late in the software development process. We define such 

requirements as “escalated requirements”. The models can aid in (1) predicting escalation 

of previously elicited requirements, and (2) managing resources due to the escalation of 

completely new (unknown during elicitation) requirements. 

7.1 Introduction 
Deciding on the set of requirements to be implemented in a future release of a software 

system is done early in the development cycle, usually after the requirements 

prioritization phase. However, for reasons difficult to control, at times requirements get 

injected later in the development cycle. Typical examples would include a request from a 

key customer to implement a “must-have” feature in the upcoming release of the software 

system; a request from an executive who promised to deliver a certain feature to a client 

to win a contract; or newly elicited requirements that take advantage of market shifts that 

occur during development. We define such a situation as an “escalation” of a 

requirement. An escalated requirement (ER) is a requirement that is not in the original 

development plan48. Typically, a development plan will need to be approved by senior 

management and acts as the “contract” between developers and managers.  The contract 

enforces that a committed requirement cannot be removed entirely or be substantially 

changed.  However, the contract does not prevent new requirements from being added to 

development. The condition here is thus stricter for removal than for insertion. 

                                                 
48 We define the development plan as a set of requirements which have to be implemented in the future 
release of a software system. 
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Note that an escalation will generally not occur in projects where the set of requirements 

to be implemented remains constant after the requirements engineering phase is 

complete, e.g., in the waterfall software development model [1]. Also, projects that utilize 

short development cycles (e.g. an agile development model [2]) will likely experience 

less of such situations because they are not locked into a long-term development plan.   

The escalation of requirements may be potentially valuable from a financial (business) 

perspective: the implementation of an ER could have a positive revenue effect. However, 

it can present difficulties from the management perspective. Reactive solutions lead to 

schedule disruption, since possible solutions are: (1) to remove some requirements from 

the plan so resources can be allocated to the ER, or (2) to increase the load on the 

development team. These solutions inevitably affect morale and consume management’s 

time. Software quality, project delivery date, and other factors may also be affected. Note 

that the later a requirement gets escalated in the development cycle, the more difficult it 

is to “squeeze” the requirement into the plan. The number of ERs may be fairly small, 

compared to the whole set of requirements in the plan. However, injection of even a 

single requirement can pose a challenge to the managers, depending on such factors as its 

implementation complexity, resource consumption, release delays, etc. Therefore, a 

proactive solution is desirable where requirements that would be escalated in the project 

are predicted suitably ahead of time and appropriate measures taken in a preventative 

manner.  

ERs can be divided into two groups: (i) known requirements, i.e., those that were 

previously elicited but not considered of high enough priority to include in the project 

plan, and (ii) unknown requirements, i.e., those that were not known prior to their 

escalation and, hence, are essentially entirely new requirements that were identified 

during development. Based on the authors’ experience, roughly 20% of escalated 

requirements are known requirements and 80% are unknown.  

If a set of known requirements that could potentially escalate in the future were known in 

advance, then the managers could meticulously examine these requirements, discuss them 
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with stakeholders and make a decision about adding these requirements to the plan in 

advance. In the case of unknown requirements, an estimate of the number, size, and 

potential source and time of an escalation of these requirements may help managers in 

reserving the workforce needed to implement these requirements.  

In this chapter, we propose potential approaches for forecasting the escalation of known 

requirements and improving resource management for the escalation of unknown 

requirements. This is an important practical problem, that is to the best of our knowledge, 

has not been addressed in the literature. Section 7.2 discusses potential solution 

approaches in detail, and Section 7.3 concludes the chapter.  

7.2 Modeling the Escalation of Requirements 
Before approving the addition of an ER to a development plan during the development 

cycle, managers should consider certain dimensions (or factors) associated with this 

requirement that will affect its prioritization. Certain dimensions, such as personal 

preferences, business value, implementation cost and dependencies among requirements 

[3], will be common to processes of prioritizing both normal and escalated requirements. 

However, there exist prioritization dimensions that will be specific to either normal or 

escalated requirements. For example, in the case of prioritization of normal requirements, 

managers often consider requirement stability [4], legal mandate [5], and requirement 

reuse. However, these dimensions are not utilized in prioritization of escalated 

requirements. Prioritization of escalated requirements will also have specific dimensions, 

such as requirements rigidity49, schedule risk50, and tradeoff risk51. 

                                                 
49 Can we implement only core features of a requirement in the current release and leave the rest for future 
releases? 
50 How far are we in the development phase? 
51 What should be given up to absorb a given requirement into the plan? 
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In Section 7.2.1 we describe a potential approach for modeling escalations of known 

requirements by simulating the evolution of prioritization dimensions. Section 7.2.2 

considers the case of unknown escalated requirements by analyzing historical data on 

escalation of requirements.  

7.2.1 Modeling the Escalation of Known Requirements 

Independent of dimensions used for prioritization (of both normal and escalated 

requirements), we may depict the prioritization process (at a high level of abstraction) as 

a procedure for splitting a set of requirements into two groups: in or out of the 

development plan based on their relation to a (possibly n-dimensional) prioritization 

threshold PT.  

For example, we may prioritize requirements based on the complexity of integrating a 

requirement into the product, and the business value. The two-dimensional prioritization 

rule may then informally be defined as follows. If integration complexity is low and 

business value is higher than $1M, then this requirement should be implemented.  

Before we proceed, let us establish formal notation. Without loss of generality, we may 

assume that the development process starts at time t0 and ends at time tS. Let us denote 

values of prioritization dimensions (or, in short, priority) for j-th requirement at time t as 

P(j,t). Clearly, P(j,t) may change with time. If P(j,t) exceeds PT  before the end of the 

current development cycle, the j-th requirement gets escalated into the current release. 

Formally, the requirement becomes escalated if P(j,t) > PT and t < tS. 

In order to assess the escalation risk of known requirements we need to follow the 

following process 

1. Tap into expert knowledge and analyze historical data on requirements 

escalations. 

2. Identify requirements likely to cross PT before the end of the current development 

cycle. 
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3. Once requirements that can potentially escalate are identified -- sort them by 

anticipated escalation-time: requirements that are expected to cross PT early in the 

development cycle are less risky than those escalated late in the development 

cycle. 

• For the “early-crossers” (moderate cases): examine them for inclusion in 

the development plan.  

• For the “late-crossers” (riskier cases)52: during the requirements process, 

analyze the stakeholders’ information on the likelihood of their escalation.  

Note that for a sustained solution, requirement engineers need to examine the 

requirements process as to "why" they were not considered for the plan in the first place. 

If the "current" requirements process is considered satisfactory then, perhaps, it is time to 

question this belief. 

The first and third stages of the process are relatively straightforward. In order to 

implement the second stage, let us examine a technique for modeling the stochastic 

evolution of P(j,t) with time. 

7.2.1.1 Modeling Evolution of Priority in Time 

In order to model the evolution of a requirement’s importance with time, in general, we 

will need the following input variables: 

• Starting (current) value of the j-th requirement’s priority P(j,0), 

• Target date values of the requirement’s priority at a future time (e.g., three 

months, end of development, etc.) P(j,τ), τ >0, 

• Dependencies that may trigger escalation of related requirements. 

                                                 
52 If the "current" requirements process is considered "optimal" then try to find innovative ways to improve 
upon this "optimal" situation. 
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The starting value of a requirement’s importance and dependencies among requirements 

are, usually, readily available. In order to obtain target date values we need to survey 

stakeholders and experts on their opinions.  

There exists numerous ways of running these types of surveys. In this paper, for the sake 

of simplicity, we assume that at a future time instance tF the expected priority of the j-th 

requirement P(j, tF) is estimated by averaging out experts’ opinions. Volatility of their 

opinions is given by standard deviation of experts’ opinions V(j, tF). Let us assume that 

the drift (growth trend) of requirements priority is linear53. We can then estimate an 

average drift of P(j, t) per unit time as mj = ( P(j, tF) - P(j, t0)) / (tF – t0). 

P(j,t) should be modeled as a stochastic process, since it is in general impossible to 

specify the priority value at some future time instance. Stochastic processes can take 

different forms and parameters can be determined by analyzing data.  

Consider the following example. Suppose that we prioritize requirements based on a 

single prioritization dimension. By surveying experts, we determine that priority value of 

the r-th requirement P(r, t) grows by two units of priority dimension per year and the 

variance of this prognosis is equal to three (units)2 per year. Let us assume that we may 

model the dynamics using Brownian motion [6]: 

 ( ) ( ),  ,r rdP r t m dt s dW t= +  

where mr and sr are constants, and W(t) is a Wiener process [6]. We can interpret mr as 

the velocity of the deterministic drift and sr=V(r)1/2 captures the power of random 

diffusion component. It turns out that the conditional probability distribution of P(r,t) at 

time t + dt, given the priority value at time t is normal with mean P(r,t0) + mr dt and a 

variance sr
2dt. In our case mr = 2 and sr= 31/2. 

                                                 
53 An actual form of the drift can be estimated from the collected data. 
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Dependencies among requirements can be modeled as follows: if the priority of a given 

requirement reaches PT at time te, then all dependent requirements will also escalate at the 

same time, i.e. their priority at time te will also be set to PT. 

Let us put all the pieces of the model together and consider the following example. 

Suppose we have six known requirements (R1, R2, … , R6), with dependencies given in 

Figure 40. Escalation of R1 will trigger escalation of R2, R3 and R4; escalation of R5 

will trigger escalation of R3 and so on. Our time horizon of interest tS = 6 month; we 

perform 5000 Monte Carlo simulations with one week time steps. P(j,t) is one-

dimensional. Priority escalation threshold PT = 4. Initial priority of requirements P(j,t0) is 

given in Table 21. We consider three cases with three different sets of initial Brownian 

motion parameters, also given in Table 21. 

R1

R2 R4

R3

R5

R6

 

Figure 40. Dependencies among requirements 

Table 21. Setup parameters 

Priority diffusion parameters (per year) 
Case 1 Case 2 Case 3 

Requirement 
ID 
(j) 

Initial 
Priority 
P(j,t0) mj sj

2 mj sj
2 mj sj

2 
R1 3.0 0.00 0.00 0.00 0.00 6.00 1.00 
R2 2.5 6.00 0.00 6.00 2.00 6.00 2.00 
R3 2.0 0.00 0.00 0.00 1.00 0.00 1.00 
R4 1.5 0.00 0.00 0.00 0.00 2.00 0.00 
R5 1.0 0.00 0.00 0.00 0.00 0.00 0.00 
R6 0.5 2.00 0.00 2.00 0.00 2.00 0.00 
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In Case 1 the diffusion parameter sj is equal to zero for all j -- the system shows 

deterministic linear growth, for those requirement where mj ≠ 0, and remains constant 

otherwise. The evolution of requirements’ priority is given in Figure 41. For example, R6 

grows at 2 priority units per year, and, therefore, in 6 months its priority rises from 0.5 to 

1.5. R2 reaches IT in 3 months, and this triggers escalation of requirement R3 at the same 

time.  
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Figure 41. Case 1. Expected priority 

In Case 2 we add some randomness to the model -- sj is now non-zero for requirements 

R2 and R3. The expected times of escalation (see Table 22) change as randomness 

increase. As we can see from Figure 42, priority of R2 and R3 experience non-linear 

growth.  
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Table 22. Expected escalation time 

Expected escalation time (month) Requirement 
ID 
(j) Case1 Case 2 Case 3 

R1 - - 2.31 
R2 3.00 3.46 2.77 
R3 3.00 4.85 3.46 
R4 - - 4.38 
R5 - - - 
R6 - - - 
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Figure 42. Case 2. Expected priority 

In Case 3 we add positive drift to R1 and negative to R4. The evolution of requirements 

priority is given in Figure 43, and expected escalation time is given in Table 22. Note that 

the expected escalation time of R2 and R3 decreases due to the escalation of R1. Even 

though R4 has negative drift, escalation of R1 “pushes” it to escalate too. 
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Figure 43. Case 3. Expected priority 

As we can see, this simple model can capture rather complicated relationships among 

requirements. Once a table of expected escalation times is available, a requirements 

engineer can analyze the data and decide what should be done with requirements that 

may potentially escalate within the current development cycle. 

Note that this model can be extended to multidimensional P(j,t). In this case we either 

project different dimensions onto one, e.g., such as by taking a weighted average of 

different dimensions, or by simulating the evolution of different dimensions using 

multidimensional Brownian motion (or another stochastic process). Let us now consider 

the escalation of unknown requirements. 

7.2.1.2 Modeling the Escalation of Unknown Requirements 

Forecasting the escalation of unknown requirements can be performed by analyzing 

historical data on escalations. The following procedure should be performed: 
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1. Identify “trouble-making” clients, i.e., those that have injected requirements in the 

past.  

2. Estimate the number and complexity of requirements the identified clients (from 

the step 1 above) have injected in the past54.  

3. Expected time of injection can be obtained by looking at a client’s schedule – 

injection typically happens during (or after) their elicitation phase.  

Once these data are obtained you can estimate when and what amount of resources may 

be needed and plan the load on development teams accordingly. 

For example, if you identified that Client A injects 5±2 requirements every release and 

the time required to implement each of those requirements is 100±50 human hours. The 

client will start their next requirement elicitation 3 months from now. Your rough 

estimate will be as follows: you will need 5×100 = 500 human hours on average; best55 

scenario is 3×50 = 150 human/hours; and your worst case is 7×150 = 1050 human hours). 

You may expect that you will need this labor force not earlier than 3 month from now. A 

more complicated scrutiny, e.g. using time series analysis [7] can be performed if needed. 

The above-described approach is most effective when the project is able to reserve 

development effort for unknown requirements escalations.  However, based on our 

discussion with industrial contacts, this is not always possible.  In industrial projects, 

often the developers will be “overloaded” with tasks.  There is then a need to provide a 

contingency plan that is agreed to up-front for dealing with unknown requirement 

escalations. This contingency plan could include deliberately planning not to implement a 

few, lower-priority requirements until late in the development lifecycle. If and when 

unknown escalations occur, these low-priority requirements can be de-scoped (i.e., their 

                                                 
54 The data may be normalized by the number of requirements implemented in previous releases of the 
software. 
55 The best scenario is no escalated requirements at all. 
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functionality reduced) or dropped altogether. The developers who were originally 

assigned to work on these requirements would then be free to implement the newly 

escalated requirements.  The advantage of this contingency plan is that by planning this 

early in the project, there would be no “floundering” on the part of management or 

developers when escalations occur; the process would be set in place and understood by 

the developers.  Also, no development effort is wasted from partially implementing 

requirements that are subsequently abandoned because higher-priority escalated 

requirements are injected into development. 

7.3 Conclusions and Future Work 

In this chapter we describe quantitative models that can be used for managing injection of 

requirements late in the software development process. In Section 7.2.1 we present a 

stochastic model for escalation of previously elicited requirements prediction. Section 

7.2.2 describes various approaches for managing resources for the escalation of new 

requirements using historical data on escalations. In the future, we plan to validate these 

models on industrial data sets of escalated requirements. 
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Chapter 8  

8 Conclusions and Future Work 
We started the thesis with a basic overview of the Software Engineering discipline and 

issues that it faces. We also described knowledge areas comprising this discipline. Next, 

we presented six papers grouped by Software discipline. The papers built quantitative 

models addressing various types of software risk. According to Hall [1], “software risk is 

a measure of the likelihood and loss of an unsatisfactory outcome affecting the software 

project, process, or product.” Software project risk deals with operational, organizational 

and contractual aspects of the software development process. Examples of project risks 

are resource constraints and relations with external suppliers. Software process risk 

relates to management and technical processes. This risk is associated with activities such 

as planning, staffing, and quality assurance in management procedures; and requirements 

analysis, coding, and testing in technical procedures. Software product risk deals with the 

product characteristics. This risk arises due to requirements volatility, code complexity, 

incorrect test specifications, etc. Software project risk is the managers’ responsibility; 

software product risk is handled mainly56 by technical staff. Software process risk is 

mitigated by both managers and technical personnel.  

In the first paper (Chapter 2) we proposed an iterative-unfolding technique for filtering a 

set of traces relevant to a specific task. This technique can be used to support non-

scalable trace analysis tools used in software testing and maintenance leading to 

improved product quality and faster problem determination. We also presented a 

validation case study, based on industrial data, proving scalability of this approach. 

                                                 
56 Product managers are also responsible for handling some aspects of product risk, such as requirements 
volatility. 
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In the second paper (Chapter 3) we analyzed the applicability both of the Shannon 

entropy and the three extended entropies (Landsberg-Vedral, Rényi, and Tsallis) to the 

predictive classification of traces (either stand-alone or as part of the iterative-unfolding 

process) described in the previous paper. Our validating case study showed promising 

performance of the extended entropies for classification task. 

The first and second papers, dealt with the product and process risks. The techniques that 

we proposed in these papers can speed up problem determination of defects encountered 

by customers, leading to a decrease of lost opportunities by increasing customer 

satisfaction (due to faster problem resolution). Faster problem resolution also leads to 

easing of resource constraints, decreasing project risk. 

In the third paper (Chapter 4) we used mathematical tools such as heavy-tail Kappa 

distribution and G/M/k queuing model to develop a set of metrics helping to identify gaps 

in quality assurance processes (addressing process risk), to allocate resources of service 

and maintenance teams (decreasing project and process risks), and to help customers to 

asses risk associated with usage of a given software product (improving customer 

relations and opening new opportunities). We validated the metrics using industrial data. 

In the fourth paper (Chapter 5) we proposed a technique for selection and prioritization of 

a minimal set of customers for profiling. The minimal set of customers has been 

identified using Binary Integer Programming algorithm; this set was later prioritized 

using a greedy heuristics. We also presented a validation case study, based on industrial 

data, showing that this approach is scalable and can produce usable results for a product 

with a large customer base. Input data from customers identified using this algorithm 

should improve code coverage by targeting problematic functionality frequently utilized 

by the users, leading to improved test specifications (decrease of product risk). Analysis 

of customer workloads also helps analysts to better comprehend user behavior, resulting 

in clearer quality assurance policies with a concomitant decrease of the process risk.  
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In the fifth paper (Chapter 6) we established a model combining Boolean networks and 

stochastic processes. This model described the interaction between requirements and 

underlying assumptions in the context of system validity. This proof-of-concept model 

simulated the effect of external changes on the validity of a software system over time. 

The thesis is concluded with the sixth paper (Chapter 7), where we described quantitative 

models that simulated the injection of requirements late in the software development 

process. We presented a stochastic model for prediction of escalation of previously 

elicited requirements and described approaches for managing resources for the escalation 

of new requirements using historical data on escalations. 

The fifth and sixth paper, similar to the first and second papers, dealt mainly with product 

and process risks, helping to proactively identify changes in existing requirements and 

potential injection of new ones. This decreased uncertainty of planning and staffing 

processes. Such information, if obtained early in the development cycle, can help 

decrease project risk by highlighting potential resource constraints. 

Software Engineering remains a relatively new field with broad scope for quantitative 

methodological work as well as the development of quantitative concepts. This thesis 

plays a role in injecting some of these elements into the field, but many open questions 

remain to which methods such as those developed here will prove invaluable. 

For example, identifying problematic requirements early in the development cycle, 

improving automatic identification of rediscovered defects and, finally, determining early 

signs of product quality deterioration and deriving actions needed to restore the quality. 

We are looking forward to making continued contributions to these challenging and 

societally important problems. 
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